These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682 [TBL] [Abstract][Full Text] [Related]
4. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance. Lai R; Chen H; Zhou Z; Yi Z; Tang B; Chen J; Yi Y; Tang C; Zhang J; Sun T Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763965 [TBL] [Abstract][Full Text] [Related]
5. Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption. Liu Y; Huang R; Ouyang Z Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443875 [TBL] [Abstract][Full Text] [Related]
6. A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate. Bai J; Shen W; Shi J; Xu W; Zhang S; Chang S Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33801056 [TBL] [Abstract][Full Text] [Related]
7. Tunable wideband-narrowband switchable absorber based on vanadium dioxide and graphene. Chen W; Li C; Wang D; An W; Gao S; Zhang C; Guo S Opt Express; 2022 Nov; 30(23):41328-41339. PubMed ID: 36366613 [TBL] [Abstract][Full Text] [Related]
8. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions. Huang H; Xia H; Xie W; Guo Z; Li H; Xie D Sci Rep; 2018 Mar; 8(1):4183. PubMed ID: 29520032 [TBL] [Abstract][Full Text] [Related]
9. Broadband near-perfect terahertz absorber in single-layered and non-structured graphene loaded with dielectrics. Soleymani A; Meymand RE; Granpayeh N Appl Opt; 2020 Mar; 59(9):2839-2848. PubMed ID: 32225833 [TBL] [Abstract][Full Text] [Related]
10. Structures, principles, and properties of metamaterial perfect absorbers. Zhao C; Wang H; Bu Y; Zou H; Wang X Phys Chem Chem Phys; 2023 Nov; 25(44):30145-30171. PubMed ID: 37916298 [TBL] [Abstract][Full Text] [Related]
11. Tunable Broadband Terahertz Waveband Absorbers Based on Fractal Technology of Graphene Metamaterial. Xie T; Chen D; Yang H; Xu Y; Zhang Z; Yang J Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498504 [TBL] [Abstract][Full Text] [Related]
12. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Cai Y; Xu KD Opt Express; 2018 Nov; 26(24):31693-31705. PubMed ID: 30650752 [TBL] [Abstract][Full Text] [Related]
13. Graphene-supported tunable bidirectional terahertz metamaterials absorbers. Peng J; Leng J; Cao D; He X; Lin F; Liu F Appl Opt; 2021 Aug; 60(22):6520-6525. PubMed ID: 34612889 [TBL] [Abstract][Full Text] [Related]
14. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. Lai R; Shi P; Yi Z; Li H; Yi Y Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241576 [TBL] [Abstract][Full Text] [Related]
15. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces. Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289 [TBL] [Abstract][Full Text] [Related]
16. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials. Feng H; Xu Z; Li K; Wang M; Xie W; Luo Q; Chen B; Kong W; Yun M Opt Express; 2021 Mar; 29(5):7158-7167. PubMed ID: 33726222 [TBL] [Abstract][Full Text] [Related]
17. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene. Chen F; Cheng Y; Luo H Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075066 [TBL] [Abstract][Full Text] [Related]