These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37157442)

  • 1. Simultaneous single-shot imaging of H and O atoms in premixed turbulent flames using femtosecond two-photon laser-induced fluorescence.
    Ruchkina M; Raveesh M; Dominguez A; Bood J; Brackmann C
    Opt Express; 2023 Apr; 31(8):12932-12943. PubMed ID: 37157442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional imaging of molecular hydrogen in H(2)-air diffusion flames using two-photon laser-induced fluorescence.
    Lempert W; Diskin G; Kumar V; Glesk I; Miles R
    Opt Lett; 1991 May; 16(9):660-2. PubMed ID: 19774030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator.
    Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR
    Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-photon-excited laser-induced fluorescence detection of atomic hydrogen in flames.
    Jain A; Wang Y; Kulatilaka WD
    Opt Lett; 2019 Dec; 44(24):5945-5948. PubMed ID: 32628192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames.
    Frank JH; Chen X; Patterson BD; Settersten TB
    Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering.
    McManus TA; Sutton JA
    Appl Opt; 2019 Apr; 58(11):2936-2947. PubMed ID: 31044899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2002 Jun; 41(18):3547-57. PubMed ID: 12078680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames.
    Li Z; Rosell J; Aldén M; Richter M
    Appl Spectrosc; 2017 Jun; 71(6):1363-1367. PubMed ID: 27864444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pump-probe strategy for instantaneous 2D detection of CH
    Han L; Gao Q; Li B; Li Z
    Appl Opt; 2022 Sep; 61(25):7361-7365. PubMed ID: 36256035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile.
    van Veen EH; Roekaerts D
    Appl Opt; 2005 Nov; 44(32):6995-7004. PubMed ID: 16294976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.
    Leffler T; Brackmann C; Aldén M; Li Z
    Appl Spectrosc; 2017 Jun; 71(6):1289-1299. PubMed ID: 28534679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence.
    Li B; Li X; Zhang D; Gao Q; Yao M; Li Z
    Opt Express; 2017 Oct; 25(21):25809-25818. PubMed ID: 29041244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames.
    Thomsen DD; Kuligowski FF; Laurendeau NM
    Appl Opt; 1997 May; 36(15):3244-52. PubMed ID: 18253332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative 2D thermometry in turbulent sooting non-premixed flames using filtered Rayleigh scattering.
    Pu J; Sutton JA
    Appl Opt; 2021 Jul; 60(19):5742-5751. PubMed ID: 34263870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network structure of turbulent premixed flames.
    Singh J; Belur Vishwanath R; Chaudhuri S; Sujith RI
    Chaos; 2017 Apr; 27(4):043107. PubMed ID: 28456168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser imaging system for determination of three-dimensional scalar gradients in turbulent flames.
    Karpetis AN; Settersten TB; Schefer RW; Barlow RS
    Opt Lett; 2004 Feb; 29(4):355-7. PubMed ID: 14971751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of iron atoms by emission spectroscopy and laser-induced fluorescence in solid propellant flames.
    Vilmart G; Dorval N; Orain M; Lambert D; Devillers R; Fabignon Y; Attal-Tretout B; Bresson A
    Appl Opt; 2018 May; 57(14):3817-3828. PubMed ID: 29791348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames.
    Nandula SP; Brown TM; Pitz RW; Debarber PA
    Opt Lett; 1994 Mar; 19(6):414-6. PubMed ID: 19829659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments.
    Vargas AC; García AM; Arrieta CE; Sierra Del Rio J; Amell A
    ACS Omega; 2020 Oct; 5(39):25095-25103. PubMed ID: 33043188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.