These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37157442)
1. Simultaneous single-shot imaging of H and O atoms in premixed turbulent flames using femtosecond two-photon laser-induced fluorescence. Ruchkina M; Raveesh M; Dominguez A; Bood J; Brackmann C Opt Express; 2023 Apr; 31(8):12932-12943. PubMed ID: 37157442 [TBL] [Abstract][Full Text] [Related]
2. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames. Kulatilaka WD; Patterson BD; Frank JH; Settersten TB Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770 [TBL] [Abstract][Full Text] [Related]
3. Two-dimensional imaging of molecular hydrogen in H(2)-air diffusion flames using two-photon laser-induced fluorescence. Lempert W; Diskin G; Kumar V; Glesk I; Miles R Opt Lett; 1991 May; 16(9):660-2. PubMed ID: 19774030 [TBL] [Abstract][Full Text] [Related]
4. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator. Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084 [TBL] [Abstract][Full Text] [Related]
5. Three-photon-excited laser-induced fluorescence detection of atomic hydrogen in flames. Jain A; Wang Y; Kulatilaka WD Opt Lett; 2019 Dec; 44(24):5945-5948. PubMed ID: 32628192 [TBL] [Abstract][Full Text] [Related]
6. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames. Frank JH; Chen X; Patterson BD; Settersten TB Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630 [TBL] [Abstract][Full Text] [Related]
7. Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering. McManus TA; Sutton JA Appl Opt; 2019 Apr; 58(11):2936-2947. PubMed ID: 31044899 [TBL] [Abstract][Full Text] [Related]
8. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation. Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK Appl Opt; 2002 Jun; 41(18):3547-57. PubMed ID: 12078680 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames. Li Z; Rosell J; Aldén M; Richter M Appl Spectrosc; 2017 Jun; 71(6):1363-1367. PubMed ID: 27864444 [TBL] [Abstract][Full Text] [Related]
10. Pump-probe strategy for instantaneous 2D detection of CH Han L; Gao Q; Li B; Li Z Appl Opt; 2022 Sep; 61(25):7361-7365. PubMed ID: 36256035 [TBL] [Abstract][Full Text] [Related]
11. Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile. van Veen EH; Roekaerts D Appl Opt; 2005 Nov; 44(32):6995-7004. PubMed ID: 16294976 [TBL] [Abstract][Full Text] [Related]
12. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames. Leffler T; Brackmann C; Aldén M; Li Z Appl Spectrosc; 2017 Jun; 71(6):1289-1299. PubMed ID: 28534679 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence. Li B; Li X; Zhang D; Gao Q; Yao M; Li Z Opt Express; 2017 Oct; 25(21):25809-25818. PubMed ID: 29041244 [TBL] [Abstract][Full Text] [Related]