These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 37157516)

  • 1. Spectroscopic atomic sample plane localization for precise digital holography.
    Zhao J; Wang Y; Huang X; Wu S
    Opt Express; 2023 Mar; 31(6):9448-9465. PubMed ID: 37157516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital inline holographic microscopy (DIHM) of weakly-scattering subjects.
    Giuliano CB; Zhang R; Wilson LG
    J Vis Exp; 2014 Feb; (84):e50488. PubMed ID: 24561665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refocusing criterion via sparsity measurements in digital holography.
    Memmolo P; Paturzo M; Javidi B; Netti PA; Ferraro P
    Opt Lett; 2014 Aug; 39(16):4719-22. PubMed ID: 25121857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality assessment of refocus criteria for particle imaging in digital off-axis holography.
    Mohammed SK; Bouamama L; Bahloul D; Picart P
    Appl Opt; 2017 May; 56(13):F158-F166. PubMed ID: 28463311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography.
    Rinehart MT; Park HS; Wax A
    Biomed Opt Express; 2015 Jun; 6(6):2067-75. PubMed ID: 26114029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram.
    Wu Y; Luo Y; Chaudhari G; Rivenson Y; Calis A; de Haan K; Ozcan A
    Light Sci Appl; 2019; 8():25. PubMed ID: 30854197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refocus criterion based on maximization of the coherence factor in digital three-wavelength holographic interferometry.
    Picart P; Montresor S; Sakharuk O; Muravsky L
    Opt Lett; 2017 Jan; 42(2):275-278. PubMed ID: 28081091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative phase retrieval for digital holography: tutorial.
    Latychevskaia T
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):D31-D40. PubMed ID: 31873366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices.
    Bouchal P; Bouchal Z
    Opt Express; 2014 Dec; 22(24):30200-16. PubMed ID: 25606951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refocus criterion from image-plane speckle correlation in digital holographic interferometry.
    Sjödahl M; Picart P
    Appl Opt; 2024 Mar; 63(7):B104-B113. PubMed ID: 38437261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern recognition with a digital holographic microscope working in partially coherent illumination.
    Dubois F; Minetti C; Monnom O; Yourassowsky C; Legros JC; Kischel P
    Appl Opt; 2002 Jul; 41(20):4108-19. PubMed ID: 12141510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D polarization-interference holographic histology for wavelet-based differentiation of the polycrystalline component of biological tissues with different necrotic states. Forensic applications.
    Ushenko A; Dubolazov A; Zheng J; Litvinenko A; Gorsky M; Ushenko Y; Soltys I; Salega O; Chen Z; Wanchuliak O
    J Biomed Opt; 2024 May; 29(5):052920. PubMed ID: 38495527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When holography meets coherent diffraction imaging.
    Latychevskaia T; Longchamp JN; Fink HW
    Opt Express; 2012 Dec; 20(27):28871-92. PubMed ID: 23263128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography.
    Minetti C; Callens N; Coupier G; Podgorski T; Dubois F
    Appl Opt; 2008 Oct; 47(29):5305-14. PubMed ID: 18846168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subnanosecond In-Line Soft X-Ray Holography Using Germanium Laser in the 20 nm Wavelength Region.
    Daido H; Schulz MS; Murai K; Kodama R; Yuan G; Goto J; Tanaka KA; Kato Y; Nakai S; Shinohara K; Honda T; Kodama I; Iwasaki H; Yoshinobu T; Tsukamoto M; Niibe M; Fukuda Y; Neely D; Macphee A; Slark G
    J Xray Sci Technol; 1995 Jan; 5(1):105-20. PubMed ID: 21307481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital holographic microscopy with dual-wavelength phase unwrapping.
    Parshall D; Kim MK
    Appl Opt; 2006 Jan; 45(3):451-9. PubMed ID: 16463728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-axis digital holographic microscopy for high speed volumetric imaging.
    Saglimbeni F; Bianchi S; Lepore A; Di Leonardo R
    Opt Express; 2014 Jun; 22(11):13710-8. PubMed ID: 24921564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence.
    Dubois F; Joannes L; Legros JC
    Appl Opt; 1999 Dec; 38(34):7085-94. PubMed ID: 18324255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.