BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37157639)

  • 1. Noise-resilient deep learning for integrated circuit tomography.
    Guo Z; Liu Z; Barbastathis G; Zhang Q; Glinsky ME; Alpert BK; Levine ZH
    Opt Express; 2023 May; 31(10):15355-15371. PubMed ID: 37157639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-assisted generative adversarial network for X-ray tomography.
    Guo Z; Song JK; Barbastathis G; Glinsky ME; Vaughan CT; Larson KW; Alpert BK; Levine ZH
    Opt Express; 2022 Jun; 30(13):23238-23259. PubMed ID: 36225009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
    Ma G; Zhang Y; Zhao X; Wang T; Li H
    Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging.
    Wu X; He B; Gao P; Zhang P; Shang Y; Zhang L; Zhong J; Jiang J; Hui H; Tian J
    Med Phys; 2023 Apr; 50(4):2354-2371. PubMed ID: 36239207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.
    Chen G; Hong X; Ding Q; Zhang Y; Chen H; Fu S; Zhao Y; Zhang X; Ji H; Wang G; Huang Q; Gao H
    Med Phys; 2020 Jul; 47(7):2916-2930. PubMed ID: 32274793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified Supervised-Unsupervised (SUPER) Learning for X-Ray CT Image Reconstruction.
    Ye S; Li Z; McCann MT; Long Y; Ravishankar S
    IEEE Trans Med Imaging; 2021 Nov; 40(11):2986-3001. PubMed ID: 34232871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
    Wu D; Kim K; Li Q
    Med Phys; 2021 Dec; 48(12):7657-7672. PubMed ID: 34791655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution image reconstruction from sparsity regularization and deep residual-learned priors.
    Zhong X; Liang N; Cai A; Yu X; Li L; Yan B
    J Xray Sci Technol; 2023; 31(2):319-336. PubMed ID: 36683486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized deep iterative reconstruction for sparse-view CT imaging.
    Su T; Cui Z; Yang J; Zhang Y; Liu J; Zhu J; Gao X; Fang S; Zheng H; Ge Y; Liang D
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34847538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.
    Clark DP; Schwartz FR; Marin D; Ramirez-Giraldo JC; Badea CT
    Med Phys; 2020 Sep; 47(9):4150-4163. PubMed ID: 32531114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.
    Kandarpa VSS; Perelli A; Bousse A; Visvikis D
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249
    [No Abstract]   [Full Text] [Related]  

  • 12. Sparse-view and limited-angle CT reconstruction with untrained networks and deep image prior.
    Shu Z; Entezari A
    Comput Methods Programs Biomed; 2022 Nov; 226():107167. PubMed ID: 36272306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution limited-angle phase tomography of dense layered objects using deep neural networks.
    Goy A; Rughoobur G; Li S; Arthur K; Akinwande AI; Barbastathis G
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19848-19856. PubMed ID: 31527279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of a micro-CT system for laboratory animal imaging with iterative reconstruction capabilities.
    Muller FM; Vanhove C; Vandeghinste B; Vandenberghe S
    Med Phys; 2022 May; 49(5):3121-3133. PubMed ID: 35170057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolution and noise performance of sparse view X-ray CT reconstruction via Lp-norm regularization.
    Zhang L; Zhao H; Ma W; Jiang J; Zhang L; Li J; Gao F; Zhou Z
    Phys Med; 2018 Aug; 52():72-80. PubMed ID: 30139612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose x-ray phase-contrast and absorption CT using equally sloped tomography.
    Fahimian BP; Mao Y; Cloetens P; Miao J
    Phys Med Biol; 2010 Sep; 55(18):5383-400. PubMed ID: 20736494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate low-dose iterative CT reconstruction from few projections by Generalized Anisotropic Total Variation minimization for industrial CT.
    Debatin M; Hesser J
    J Xray Sci Technol; 2015; 23(6):701-26. PubMed ID: 26756407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm.
    Solomon J; Lyu P; Marin D; Samei E
    Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.