These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37157688)

  • 1. Accurate evaluation of self-heterodyne laser linewidth measurements using Wiener filters.
    Kantner M; Mertenskötter L
    Opt Express; 2023 May; 31(10):15994-16009. PubMed ID: 37157688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Narrow laser-linewidth measurement using short delay self-heterodyne interferometry.
    Zhao Z; Bai Z; Jin D; Qi Y; Ding J; Yan B; Wang Y; Lu Z; Mildren RP
    Opt Express; 2022 Aug; 30(17):30600-30610. PubMed ID: 36242160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Noise Floor on the Measurement of Laser Linewidth Using Short-Delay-Length Self-Heterodyne/Homodyne Techniques.
    Zhao Z; Bai Z; Jin D; Chen X; Qi Y; Ding J; Yan B; Wang Y; Lu Z; Mildren RP
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrow-linewidth swept laser phase reconstruction and noise measurement technology and its applications.
    Zhang X; Yang F; Feng Z; Wei F; Cai H; Qu R
    Opt Express; 2018 Dec; 26(25):32958-32970. PubMed ID: 30645455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser frequency noise characterization by self-heterodyne with both long and short delay.
    Ma W; Xiong B; Sun C; Ke X; Hao Z; Wang L; Wang J; Han Y; Li H; Luo Y
    Appl Opt; 2019 May; 58(13):3555-3563. PubMed ID: 31044854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-narrow linewidth measurement based on Voigt profile fitting.
    Chen M; Meng Z; Wang J; Chen W
    Opt Express; 2015 Mar; 23(5):6803-8. PubMed ID: 25836899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems.
    Chen JQ; Chen C; Sun JJ; Zhang JW; Liu ZH; Qin L; Ning YQ; Wang LJ
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency noise measurements using coherent self-heterodyne detection.
    Thorndahl Thomsen S; Far Brusatori M; Hedegaard Arent N; Ranjan Kumar R; Volet N
    Opt Lett; 2023 Dec; 48(24):6372-6375. PubMed ID: 38099751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase noise analysis of a 10 Watt Yb-doped fibre amplifier seeded by a 1-Hz-linewidth laser.
    Ricciardi I; Mosca S; Maddaloni P; Santamaria L; De Rosa M; De Natale P
    Opt Express; 2013 Jun; 21(12):14618-26. PubMed ID: 23787649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-area method to precisely estimate laser linewidth from its frequency-noise spectrum.
    Zhou Q; Qin J; Xie W; Liu Z; Tong Y; Dong Y; Hu W
    Appl Opt; 2015 Oct; 54(28):8282-9. PubMed ID: 26479597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated self-heterodyne method for ultra-low-noise laser linewidth measurements.
    Yuan Z; Wang H; Liu P; Li B; Shen B; Gao M; Chang L; Jin W; Feshali A; Paniccia M; Bowers J; Vahala K
    Opt Express; 2022 Jul; 30(14):25147-25161. PubMed ID: 36237052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers.
    Wang XG; Grillot F; Wang C
    Opt Express; 2018 Feb; 26(3):2325-2334. PubMed ID: 29401772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method.
    Tsuchida H
    Opt Lett; 2011 Mar; 36(5):681-3. PubMed ID: 21368947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Line shape of a delayed self-heterodyne varied with noise types and delays.
    Fang Z; Wei F; Yang F; Chen D; Ye Q; Cai H; Qu R
    Appl Opt; 2022 May; 61(13):3761-3770. PubMed ID: 36256418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of electrical noise limits in ultra-stable laser systems.
    Zhang J; Shi XH; Zeng XY; Lü XL; Deng K; Lu ZH
    Rev Sci Instrum; 2016 Dec; 87(12):123105. PubMed ID: 28040928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope.
    Huang S; Zhu T; Liu M; Huang W
    Sci Rep; 2017 Feb; 7():41988. PubMed ID: 28181506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise-sideband-free and narrow-linewidth photonic microwave generation based on anoptical heterodyne technique of low-noise fiber lasers.
    Zhang Z; Zhao Q; Yang C; Guan X; Tan T; Wang Y; Zhou K; Feng Z; Yang Z; Xu S
    Appl Opt; 2020 Sep; 59(26):7907-7911. PubMed ID: 32976463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers.
    Uehara N; Ueda K
    Opt Lett; 1993 Apr; 18(7):505-7. PubMed ID: 19802182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis for estimating laser integrated linewidth via frequency-noise power spectral density.
    Ma JY; Zhan XH; Wang S; Yin ZQ; Chen W; Guo GC; Han ZF
    Opt Lett; 2024 Oct; 49(20):5893-5896. PubMed ID: 39404565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti:sapphire laser seeded by a phase-modulated single-frequency fiber laser.
    Brandl MF; Mücke OD
    Opt Lett; 2010 Dec; 35(24):4223-5. PubMed ID: 21165144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.