These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37157755)

  • 1. Dipole-lattice nanoparticle resonances in finite arrays.
    Karimi V; Babicheva VE
    Opt Express; 2023 May; 31(10):16857-16871. PubMed ID: 37157755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size.
    Zakomirnyi VI; Ershov AE; Gerasimov VS; Karpov SV; Ågren H; Rasskazov IL
    Opt Lett; 2019 Dec; 44(23):5743-5746. PubMed ID: 31774768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super- and Subradiant Lattice Resonances in Bipartite Nanoparticle Arrays.
    Cuartero-González A; Sanders S; Zundel L; Fernández-Domínguez AI; Manjavacas A
    ACS Nano; 2020 Sep; 14(9):11876-11887. PubMed ID: 32794729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple surface lattice resonances of overlapping nanoparticle arrays with different lattice spacing.
    Zheng H; Bai Y; Zhang Q; Yu Y; Liu S
    Opt Express; 2023 Oct; 31(22):35937-35947. PubMed ID: 38017754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays.
    Manjavacas A; Zundel L; Sanders S
    ACS Nano; 2019 Sep; 13(9):10682-10693. PubMed ID: 31487460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral Lattice Resonances in 2.5-Dimensional Periodic Arrays with Achiral Unit Cells.
    Cerdán L; Zundel L; Manjavacas A
    ACS Photonics; 2023 Jun; 10(6):1925-1935. PubMed ID: 37363634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Resonances Excited by Finite-Width Light Beams.
    Zundel L; Deop-Ruano JR; Martinez-Herrero R; Manjavacas A
    ACS Omega; 2022 Sep; 7(35):31431-31441. PubMed ID: 36092601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal Incidence Excitation of Out-of-Plane Lattice Resonances in Bipartite Arrays of Metallic Nanostructures.
    Alvarez-Serrano JJ; Deop-Ruano JR; Aglieri V; Toma A; Manjavacas A
    ACS Photonics; 2024 Jan; 11(1):301-309. PubMed ID: 38344384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E; Volk K; Mulvaney P; Karg M
    Langmuir; 2020 Nov; 36(45):13601-13612. PubMed ID: 33147412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Surface Lattice Resonances.
    Goerlitzer ESA; Mohammadi R; Nechayev S; Volk K; Rey M; Banzer P; Karg M; Vogel N
    Adv Mater; 2020 Jun; 32(22):e2001330. PubMed ID: 32319171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization of Lattice Resonances.
    Baur S; Sanders S; Manjavacas A
    ACS Nano; 2018 Feb; 12(2):1618-1629. PubMed ID: 29301081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MXene-antenna electrode with collective multipole resonances.
    Karimi V; Babicheva VE
    Nanoscale; 2024 Feb; 16(9):4656-4667. PubMed ID: 38314841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective resonances in gold nanoparticle arrays.
    Auguié B; Barnes WL
    Phys Rev Lett; 2008 Oct; 101(14):143902. PubMed ID: 18851529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra.
    Juodėnas M; Tamulevičius T; Henzie J; Erts D; Tamulevičius S
    ACS Nano; 2019 Aug; 13(8):9038-9047. PubMed ID: 31329417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice Mie resonances and emissivity enhancement in mid-infrared iron pyrite metasurfaces.
    Islam MS; Babicheva VE
    Opt Express; 2023 Nov; 31(24):40380-40392. PubMed ID: 38041341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface lattice resonance in three-dimensional plasmonic arrays fabricated via self-assembly of silica-coated gold nanoparticles.
    Hasegawa M; Watanabe K; Namigata H; Welling TAJ; Suga K; Nagao D
    J Colloid Interface Sci; 2023 Mar; 633():226-232. PubMed ID: 36446215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice relaxation effects on the collective resonance spectra of a finite dipole array.
    Gai B; Guo J; Jin Y
    Phys Chem Chem Phys; 2023 Apr; 25(14):10054-10062. PubMed ID: 36970935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.