These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37158302)

  • 61. Do we need to adjust for interim analyses in a Bayesian adaptive trial design?
    Ryan EG; Brock K; Gates S; Slade D
    BMC Med Res Methodol; 2020 Jun; 20(1):150. PubMed ID: 32522284
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Designing multi-arm multi-stage clinical trials using a risk-benefit criterion for treatment selection.
    Jaki T; Hampson LV
    Stat Med; 2016 Feb; 35(4):522-33. PubMed ID: 26456537
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optimal adaptive single-arm phase II trials under quantified uncertainty.
    Kunzmann K; Kieser M
    J Biopharm Stat; 2020; 30(1):89-103. PubMed ID: 31023135
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A web application for the design of multi-arm clinical trials.
    Grayling MJ; Wason JM
    BMC Cancer; 2020 Jan; 20(1):80. PubMed ID: 32005187
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Using Bayesian adaptive designs to improve phase III trials: a respiratory care example.
    Ryan EG; Bruce J; Metcalfe AJ; Stallard N; Lamb SE; Viele K; Young D; Gates S
    BMC Med Res Methodol; 2019 May; 19(1):99. PubMed ID: 31088354
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Exact sample size determination for a single Poisson random sample.
    Gentile S; Sambucini V
    Biom J; 2023 Oct; 65(7):e2200183. PubMed ID: 37160700
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Bayesian approach for unplanned sample sizes in phase II cancer clinical trials.
    Li Y; Mick R; Heitjan DF
    Clin Trials; 2012 Jun; 9(3):293-302. PubMed ID: 22523304
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bayesian hierarchical modeling of patient subpopulations: efficient designs of Phase II oncology clinical trials.
    Berry SM; Broglio KR; Groshen S; Berry DA
    Clin Trials; 2013 Oct; 10(5):720-34. PubMed ID: 23983156
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bayesian adaptive clinical trial designs for respiratory medicine.
    Ryan EG; Couturier DL; Heritier S
    Respirology; 2022 Oct; 27(10):834-843. PubMed ID: 35918280
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Bayesian predictive sample size selection design for single-arm exploratory clinical trials.
    Teramukai S; Daimon T; Zohar S
    Stat Med; 2012 Dec; 31(30):4243-54. PubMed ID: 22807115
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bayesian semiparametric meta-analytic-predictive prior for historical control borrowing in clinical trials.
    Hupf B; Bunn V; Lin J; Dong C
    Stat Med; 2021 Jun; 40(14):3385-3399. PubMed ID: 33851441
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Bayesian sequential design using alpha spending function to control type I error.
    Zhu H; Yu Q
    Stat Methods Med Res; 2017 Oct; 26(5):2184-2196. PubMed ID: 26187736
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The WIRE study a phase II, multi-arm, multi-centre, non-randomised window-of-opportunity clinical trial platform using a Bayesian adaptive design for proof-of-mechanism of novel treatment strategies in operable renal cell cancer - a study protocol.
    Ursprung S; Mossop H; Gallagher FA; Sala E; Skells R; Sipple JAN; Mitchell TJ; Chhabra A; Fife K; Matakidou A; Young G; Walker A; Thomas MG; Ortuzar MC; Sullivan M; Protheroe A; Oades G; Venugopal B; Warren AY; Stone J; Eisen T; Wason J; Welsh SJ; Stewart GD
    BMC Cancer; 2021 Nov; 21(1):1238. PubMed ID: 34794412
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Some recommendations for multi-arm multi-stage trials.
    Wason J; Magirr D; Law M; Jaki T
    Stat Methods Med Res; 2016 Apr; 25(2):716-27. PubMed ID: 23242385
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Utility of Bayesian Single-Arm Design in New Drug Application for Rare Cancers in Japan: A Case Study of Phase 2 Trial for Sarcoma.
    Hirakawa A; Nishikawa T; Yonemori K; Shibata T; Nakamura K; Ando M; Ueda T; Ozaki T; Tamura K; Kawai A; Fujiwara Y
    Ther Innov Regul Sci; 2018 May; 52(3):334-338. PubMed ID: 29714533
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Bayesian Time Machine: Accounting for temporal drift in multi-arm platform trials.
    Saville BR; Berry DA; Berry NS; Viele K; Berry SM
    Clin Trials; 2022 Oct; 19(5):490-501. PubMed ID: 35993547
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Bayesian-adaptive decision-theoretic approach can reduce the sample sizes for multiarm exercise oncology trials.
    Buffart LM; Bassi A; Stuiver MM; Aaronson NK; Sonke GS; Berkhof J; van de Ven PM
    J Clin Epidemiol; 2023 Jul; 159():190-198. PubMed ID: 37245703
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Incorporating historical information to improve phase I clinical trials.
    Zhou Y; Lee JJ; Wang S; Bailey S; Yuan Y
    Pharm Stat; 2021 Nov; 20(6):1017-1034. PubMed ID: 33793044
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Bayesian decision-theoretic sequential response-adaptive randomization design.
    Jiang F; Jack Lee J; Müller P
    Stat Med; 2013 May; 32(12):1975-94. PubMed ID: 23315678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.