These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37158492)

  • 1. Organic Electroactive Materials for Aqueous Redox Flow Batteries.
    Yang G; Zhu Y; Hao Z; Lu Y; Zhao Q; Zhang K; Chen J
    Adv Mater; 2023 Aug; 35(33):e2301898. PubMed ID: 37158492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design.
    Zhong F; Yang M; Ding M; Jia C
    Front Chem; 2020; 8():451. PubMed ID: 32637392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular engineering of organic electroactive materials for redox flow batteries.
    Ding Y; Zhang C; Zhang L; Zhou Y; Yu G
    Chem Soc Rev; 2018 Jan; 47(1):69-103. PubMed ID: 29044260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies.
    Li Z; Lu YC
    Adv Mater; 2020 Nov; 32(47):e2002132. PubMed ID: 33094532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative evaluation of computational methods to accelerate the study of alloxazine-derived electroactive compounds for energy storage.
    Zhang Q; Khetan A; Er S
    Sci Rep; 2021 Feb; 11(1):4089. PubMed ID: 33603045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries.
    Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doping Engineering of M-N-C Electrocatalyst Based Membrane-Electrode Assembly for High-Performance Aqueous Polysulfides Redox Flow Batteries.
    Chen B; Huang H; Lin J; Zhu K; Yang L; Wang X; Chen J
    Adv Sci (Weinh); 2023 Jun; 10(16):e2206949. PubMed ID: 37066747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Engineering of Aromatic Imides for Organic Secondary Batteries.
    Li L; Yin YJ; Hei JP; Wan XJ; Li ML; Cui Y
    Small; 2021 Mar; 17(10):e2005752. PubMed ID: 33544971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte.
    Hu B; Luo J; Hu M; Yuan B; Liu TL
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion.
    Huang J; Dong X; Guo Z; Wang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18322-18333. PubMed ID: 32329546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic electrode materials and carbon/small-sulfur composites for affordable, lightweight and sustainable batteries.
    Luo C
    Chem Commun (Camb); 2023 Aug; 59(65):9803-9817. PubMed ID: 37475598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Dendrite-Free Tin Anode for High-Energy Aqueous Redox Flow Batteries.
    Yao Y; Wang Z; Li Z; Lu YC
    Adv Mater; 2021 Apr; 33(15):e2008095. PubMed ID: 33694199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery.
    Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benzidine Derivatives: A Class of High Redox Potential Molecules for Aqueous Organic Flow Batteries.
    Liu X; Li T; Zhang C; Li X
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307796. PubMed ID: 37389543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic Electrode Materials for Metal Ion Batteries.
    Shea JJ; Luo C
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5361-5380. PubMed ID: 31917538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity.
    Yang X; Garcia SN; Janoschka T; Kónya D; Hager MD; Schubert US
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34201612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.