These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37158636)

  • 1. A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water.
    Sanchez-Burgos I; Muniz MC; Espinosa JR; Panagiotopoulos AZ
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA; Patel S
    J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The water cavitation line as predicted by the TIP4P/2005 model.
    P Lamas C; Vega C; G Noya E; Sanz E
    J Chem Phys; 2023 Mar; 158(12):124504. PubMed ID: 37003766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.
    Bauer BA; Warren GL; Patel S
    J Chem Theory Comput; 2009 Feb; 5(2):359-373. PubMed ID: 23133341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of nonpolarizable inorganic salt solution interfaces: NaCl, NaBr, and NaI in transferable intermolecular potential 4-point with charge dependent polarizability (TIP4P-QDP) water.
    Bauer BA; Patel S
    J Chem Phys; 2010 Jan; 132(2):024713. PubMed ID: 20095700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor-liquid equilibrium of water with the MB-pol many-body potential.
    Muniz MC; Gartner TE; Riera M; Knight C; Yue S; Paesani F; Panagiotopoulos AZ
    J Chem Phys; 2021 Jun; 154(21):211103. PubMed ID: 34240989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R; Sum AK; Narumi T; Yasuoka K
    J Chem Phys; 2011 Mar; 134(12):124708. PubMed ID: 21456696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous ice nucleation in an ab initio machine-learning model of water.
    Piaggi PM; Weis J; Panagiotopoulos AZ; Debenedetti PG; Car R
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2207294119. PubMed ID: 35939708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.
    Horn HW; Swope WC; Pitera JW
    J Chem Phys; 2005 Nov; 123(19):194504. PubMed ID: 16321097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of entropy on the nucleation of cavitation bubbles in water under tension.
    Menzl G; Dellago C
    J Chem Phys; 2016 Dec; 145(21):211918. PubMed ID: 28799367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models.
    Fugel M; Weiss VC
    J Chem Phys; 2017 Feb; 146(6):064505. PubMed ID: 28201887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, thermodynamics, and liquid-vapor equilibrium of ethanol from molecular-dynamics simulations using nonadditive interactions.
    Patel S; Brooks CL
    J Chem Phys; 2005 Oct; 123(16):164502. PubMed ID: 16268707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous Vapor and Ice Nucleation in Water at Negative Pressures: A Classical Density Functional Theory Study.
    Singh Y; Santra M; Singh RS
    J Phys Chem B; 2023 Apr; 127(14):3312-3324. PubMed ID: 36989467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism for cavitation in water under tension.
    Menzl G; Gonzalez MA; Geiger P; Caupin F; Abascal JL; Valeriani C; Dellago C
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13582-13587. PubMed ID: 27803329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method.
    Klauda JB; Wu X; Pastor RW; Brooks BR
    J Phys Chem B; 2007 May; 111(17):4393-400. PubMed ID: 17425357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium between a Droplet and Surrounding Vapor: A Discussion of Finite Size Effects.
    Tröster A; Schmitz F; Virnau P; Binder K
    J Phys Chem B; 2018 Apr; 122(13):3407-3417. PubMed ID: 29220178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model.
    Patel S; Brooks CL
    J Chem Phys; 2005 Jan; 122(2):024508. PubMed ID: 15638599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Computing the Tolman length for solid-liquid interfaces.
    Cheng B; Ceriotti M
    J Chem Phys; 2018 Jun; 148(23):231102. PubMed ID: 29935495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.