These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 37158892)
1. TGF-β1 upregulates secreted protein acidic and rich in cysteine expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Dang X; Fang L; Jia Q; Wu Z; Guo Y; Liu B; Cheng JC; Sun YP Cell Commun Signal; 2023 May; 21(1):101. PubMed ID: 37158892 [TBL] [Abstract][Full Text] [Related]
2. TGF-β1 induces VEGF expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Fang L; Li Y; Wang S; Li Y; Chang HM; Yi Y; Yan Y; Thakur A; Leung PCK; Cheng JC; Sun YP Exp Mol Med; 2020 Mar; 52(3):450-460. PubMed ID: 32152452 [TBL] [Abstract][Full Text] [Related]
3. High ovarian GDF-8 levels contribute to elevated estradiol production in ovarian hyperstimulation syndrome by stimulating aromatase expression. Fang L; Yan Y; Wang S; Guo Y; Li Y; Jia Q; Han X; Liu B; Cheng JC; Sun YP Int J Biol Sci; 2021; 17(9):2338-2347. PubMed ID: 34239360 [No Abstract] [Full Text] [Related]
4. TGF-β1 and TGF-β3, but not TGF-β2, are upregulated in the ovaries of ovarian hyperstimulation syndrome†. Liu B; Jia Q; Hong IS; Dang X; Wu Z; Wang H; Cheng JC; Fang L Biol Reprod; 2024 Jan; 110(1):116-129. PubMed ID: 37801702 [TBL] [Abstract][Full Text] [Related]
5. Melatonin stimulates aromatase expression and estradiol production in human granulosa-lutein cells: relevance for high serum estradiol levels in patients with ovarian hyperstimulation syndrome. Cheng JC; Fang L; Li Y; Wang S; Li Y; Yan Y; Jia Q; Wu Z; Wang Z; Han X; Sun YP Exp Mol Med; 2020 Aug; 52(8):1341-1350. PubMed ID: 32855437 [TBL] [Abstract][Full Text] [Related]
6. Melatonin stimulates VEGF expression in human granulosa-lutein cells: A potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Li Y; Fang L; Zhang R; Wang S; Li Y; Yan Y; Yu Y; Cheng JC; Sun YP Mol Cell Endocrinol; 2020 Dec; 518():110981. PubMed ID: 32791190 [TBL] [Abstract][Full Text] [Related]
7. TGF-β1 promotes hyaluronan synthesis by upregulating hyaluronan synthase 2 expression in human granulosa-lutein cells. Wang F; Chang HM; Yi Y; Li H; Leung PCK Cell Signal; 2019 Nov; 63():109392. PubMed ID: 31437481 [TBL] [Abstract][Full Text] [Related]
8. TGF-β1 stimulates aromatase expression and estradiol production through SMAD2 and ERK1/2 signaling pathways in human granulosa-lutein cells. Cheng JC; Fang L; Yan Y; He J; Guo Y; Jia Q; Gao Y; Han X; Sun YP J Cell Physiol; 2021 Sep; 236(9):6619-6629. PubMed ID: 33512728 [TBL] [Abstract][Full Text] [Related]
9. Growth differentiation factor-11 downregulates steroidogenic acute regulatory protein expression through ALK5-mediated SMAD3 signaling pathway in human granulosa-lutein cells. Jia Q; Liu B; Dang X; Guo Y; Han X; Song T; Cheng JC; Fang L Reprod Biol Endocrinol; 2022 Feb; 20(1):34. PubMed ID: 35183204 [TBL] [Abstract][Full Text] [Related]
10. AREG upregulates secreted protein acidic and rich in cysteine expression in human granulosa cells. Dang X; Fang L; Zhang Q; Liu B; Cheng JC; Sun YP Mol Cell Endocrinol; 2023 Feb; 561():111826. PubMed ID: 36462647 [TBL] [Abstract][Full Text] [Related]
11. SPARC knockdown attenuated TGF-β1-induced fibrotic effects through Smad2/3 pathways in human pterygium fibroblasts. Fan J; Zhang X; Jiang Y; Chen L; Sheng M; Chen Y Arch Biochem Biophys; 2021 Nov; 713():109049. PubMed ID: 34624278 [TBL] [Abstract][Full Text] [Related]
12. The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle-luteal transition. Joseph C; Hunter MG; Sinclair KD; Robinson RS Reproduction; 2012 Sep; 144(3):361-72. PubMed ID: 22733805 [TBL] [Abstract][Full Text] [Related]
13. TGF-β1 Increases GDNF Production by Upregulating the Expression of GDNF and Furin in Human Granulosa-Lutein Cells. Yin J; Chang HM; Yi Y; Yao Y; Leung PCK Cells; 2020 Jan; 9(1):. PubMed ID: 31936902 [TBL] [Abstract][Full Text] [Related]
15. The direct and indirect effects of kisspeptin-54 on granulosa lutein cell function. Owens LA; Abbara A; Lerner A; O'floinn S; Christopoulos G; Khanjani S; Islam R; Hardy K; Hanyaloglu AC; Lavery SA; Dhillo WS; Franks S Hum Reprod; 2018 Feb; 33(2):292-302. PubMed ID: 29206944 [TBL] [Abstract][Full Text] [Related]
16. Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: a mechanism for estradiol production in the luteal phase. Fang L; Yu Y; Li Y; Wang S; Zhang R; Guo Y; Li Y; Yan Y; Sun YP Hum Reprod; 2019 Oct; 34(10):2018-2026. PubMed ID: 31553790 [TBL] [Abstract][Full Text] [Related]
17. Upregulation of AREG, EGFR, and HER2 contributes to increased VEGF expression in granulosa cells of patients with OHSS†. Fang L; Yu Y; Li Y; Wang S; He J; Zhang R; Sun YP Biol Reprod; 2019 Aug; 101(2):426-432. PubMed ID: 31167229 [TBL] [Abstract][Full Text] [Related]
19. A novel molecular pathway for Snail-dependent, SPARC-mediated invasion in non-small cell lung cancer pathogenesis. Grant JL; Fishbein MC; Hong LS; Krysan K; Minna JD; Shay JW; Walser TC; Dubinett SM Cancer Prev Res (Phila); 2014 Jan; 7(1):150-60. PubMed ID: 24253315 [TBL] [Abstract][Full Text] [Related]
20. Signal mechanisms of vascular endothelial growth factor and interleukin-8 in ovarian hyperstimulation syndrome: dopamine targets their common pathways. Chen SU; Chou CH; Lin CW; Lee H; Wu JC; Lu HF; Chen CD; Yang YS Hum Reprod; 2010 Mar; 25(3):757-67. PubMed ID: 20008399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]