These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37159106)
1. Sulfur Poisoning and Self-Recovery of Single-Site Rh Feng S; Jiang M; Song X; Qiao P; Yan L; Cai Y; Li B; Li C; Ning L; Liu S; Zhang W; Wu G; Yang J; Dong W; Yang X; Jiang Z; Ding Y Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202304282. PubMed ID: 37159106 [TBL] [Abstract][Full Text] [Related]
2. Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson's catalyst for hydroformylation of olefins. Liu Y; Liu Z; Hui Y; Wang L; Zhang J; Yi X; Chen W; Wang C; Wang H; Qin Y; Song L; Zheng A; Xiao FS Nat Commun; 2023 May; 14(1):2531. PubMed ID: 37137908 [TBL] [Abstract][Full Text] [Related]
3. Highly Active Rh Catalysts with Strong π-Acceptor Phosphine-Containing Porous Organic Polymers for Alkene Hydroformylation. Wu M; Gao G; Yang C; Sun P; Li F J Org Chem; 2023 Apr; 88(8):5059-5068. PubMed ID: 36343284 [TBL] [Abstract][Full Text] [Related]
4. Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh Lang R; Li T; Matsumura D; Miao S; Ren Y; Cui YT; Tan Y; Qiao B; Li L; Wang A; Wang X; Zhang T Angew Chem Int Ed Engl; 2016 Dec; 55(52):16054-16058. PubMed ID: 27862789 [TBL] [Abstract][Full Text] [Related]
5. Insight into the dual action mechanism of 3V-PPh Ma J; Zhu M; Wang Y; Liu M; Wang B Phys Chem Chem Phys; 2022 Apr; 24(16):9673-9684. PubMed ID: 35411891 [TBL] [Abstract][Full Text] [Related]
6. C-N Coupling through Hydroaminoalkylation on a Single-Atom Rh Heterogeneous Catalyst. Li Y; Tang Y; Tao FF Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202214332. PubMed ID: 36749904 [TBL] [Abstract][Full Text] [Related]
7. Efficient Interfacial Sites between Metallic and Oxidized Cobalt for Propene Hydroformylation. Pu Z; Zhao J; Yin H; Zhao J; Ma X; Zeng J Nano Lett; 2024 Jan; 24(3):852-858. PubMed ID: 38051031 [TBL] [Abstract][Full Text] [Related]
8. Bifunctional hydroformylation on heterogeneous Rh-WO Ro I; Qi J; Lee S; Xu M; Yan X; Xie Z; Zakem G; Morales A; Chen JG; Pan X; Vlachos DG; Caratzoulas S; Christopher P Nature; 2022 Sep; 609(7926):287-292. PubMed ID: 36071187 [TBL] [Abstract][Full Text] [Related]
9. Ultralow-Loading and High-Performing Ionic Liquid-Immobilizing Rhodium Single-Atom Catalysts for Hydroformylation. Wei X; Jiang Y; Ma Y; Fang J; Peng Q; Xu W; Liao H; Zhang F; Dai S; Hou Z Chemistry; 2022 Sep; 28(53):e202200374. PubMed ID: 35768335 [TBL] [Abstract][Full Text] [Related]
10. Suppressing Metal Leaching and Sintering in Hydroformylation Reaction by Modulating the Coordination of Rh Single Atoms with Reactants. Yu Z; Zhang S; Zhang L; Liu X; Jia Z; Li L; Ta N; Wang A; Liu W; Wang A; Zhang T J Am Chem Soc; 2024 May; 146(17):11955-11967. PubMed ID: 38640231 [TBL] [Abstract][Full Text] [Related]
11. Elucidation of hemilabile-coordination-induced tunable regioselectivity in single-site Rh-catalyzed heterogeneous hydroformylation. Fan B; Jiang M; Wang G; Zhao Y; Mei B; Han J; Ma L; Li C; Hou G; Wu T; Yan L; Ding Y Nat Commun; 2024 Aug; 15(1):6967. PubMed ID: 39138177 [TBL] [Abstract][Full Text] [Related]
12. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study. Chen Y; Xie C; Li Y; Song C; Bolin TB Phys Chem Chem Phys; 2010 Jun; 12(21):5707-11. PubMed ID: 20431820 [TBL] [Abstract][Full Text] [Related]
13. Polar phase hydroformylation: the dramatic effect of water on mono- and dirhodium catalysts. Aubry DA; Bridges NN; Ezell K; Stanley GG J Am Chem Soc; 2003 Sep; 125(37):11180-1. PubMed ID: 16220923 [TBL] [Abstract][Full Text] [Related]
14. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Wang L; Zhang W; Wang S; Gao Z; Luo Z; Wang X; Zeng R; Li A; Li H; Wang M; Zheng X; Zhu J; Zhang W; Ma C; Si R; Zeng J Nat Commun; 2016 Dec; 7():14036. PubMed ID: 28004661 [TBL] [Abstract][Full Text] [Related]
15. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory. Sparta M; Børve KJ; Jensen VR J Am Chem Soc; 2007 Jul; 129(27):8487-99. PubMed ID: 17555314 [TBL] [Abstract][Full Text] [Related]
16. Intermetallic Nanocatalyst for Highly Active Heterogeneous Hydroformylation. Chen M; Gupta G; Ordonez CW; Lamkins AR; Ward CJ; Abolafia CA; Zhang B; Roling LT; Huang W J Am Chem Soc; 2021 Dec; 143(49):20907-20915. PubMed ID: 34859675 [TBL] [Abstract][Full Text] [Related]
17. Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta. Qi L; Das S; Zhang Y; Nozik D; Gates BC; Bell AT J Am Chem Soc; 2023 Feb; 145(5):2911-2929. PubMed ID: 36715296 [TBL] [Abstract][Full Text] [Related]
18. Effectively Regulating the Microenvironment of Atomically Dispersed Rh through Co and Pi to Promote the Selectivity in Olefin Hydroformylation. Wei B; Liu X; Hua K; Deng Y; Wang H; Sun Y ACS Appl Mater Interfaces; 2021 Apr; 13(13):15113-15121. PubMed ID: 33757285 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Gao P; Liang G; Ru T; Liu X; Qi H; Wang A; Chen FE Nat Commun; 2021 Aug; 12(1):4698. PubMed ID: 34349125 [TBL] [Abstract][Full Text] [Related]
20. Dual-Ionically Bound Single-Site Rhodium on Porous Ionic Polymer Rivals Commercial Methanol Carbonylation Catalysts. Ren Z; Lyu Y; Song X; Liu Y; Jiang Z; Lin R; Ding Y Adv Mater; 2019 Dec; 31(50):e1904976. PubMed ID: 31696984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]