BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37159254)

  • 21. Overcoming substrate limitations for improved production of ethylene in E. coli.
    Lynch S; Eckert C; Yu J; Gill R; Maness PC
    Biotechnol Biofuels; 2016; 9():3. PubMed ID: 26734073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase.
    Wei CC; Wang ZQ; Wang Q; Meade AL; Hemann C; Hille R; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(1):315-9. PubMed ID: 11020389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design?
    Ansari A; Rajaraman G
    Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ethylene formation and phenotypic analysis of transgenic tobacco plants expressing a bacterial ethylene-forming enzyme.
    Araki S; Matsuoka M; Tanaka M; Ogawa T
    Plant Cell Physiol; 2000 Mar; 41(3):327-34. PubMed ID: 10805596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering for ethylene production by inserting the ethylene-forming enzyme gene (efe) at the 16S rDNA sites of Pseudomonas putida KT2440.
    Wang JP; Wu LX; Xu F; Lv J; Jin HJ; Chen SF
    Bioresour Technol; 2010 Aug; 101(16):6404-9. PubMed ID: 20399645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting structural and electronic effects in inducible nitric oxide synthase.
    Hannibal L; Page RC; Haque MM; Bolisetty K; Yu Z; Misra S; Stuehr DJ
    Biochem J; 2015 Apr; 467(1):153-65. PubMed ID: 25608846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic divergencies in the mechanism of L-arginine hydroxylating nonheme iron enzymes.
    Ali HS; de Visser SP
    Front Chem; 2024; 12():1365494. PubMed ID: 38406558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of mutations in human endothelial nitric oxide synthase at residues Tyr-357 and Arg-365 on L-arginine hydroxylation and GN-hydroxy-L-arginine oxidation.
    Chen PF; Berka V; Wu KK
    Arch Biochem Biophys; 2003 Mar; 411(1):83-92. PubMed ID: 12590926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Zymomonas moblis for ethylene production from straw hydrolysate.
    He Y; Wu B; Xia W; Zhao KY; Qin Y; Tan Q; Yu QH; Liu PT; Hu GQ; He MX
    Appl Microbiol Biotechnol; 2021 Feb; 105(4):1709-1720. PubMed ID: 33512573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon dioxide enhances the development of the ethylene forming enzyme in tobacco leaf discs.
    Philosoph-Hadas S; Aharoni N; Yang SF
    Plant Physiol; 1986 Dec; 82(4):925-9. PubMed ID: 16665167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates.
    Lefèvre-Groboillot D; Boucher JL; Mansuy D; Stuehr DJ
    FEBS J; 2006 Jan; 273(1):180-91. PubMed ID: 16367758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.
    Johansson N; Persson KO; Quehl P; Norbeck J; Larsson C
    FEMS Yeast Res; 2014 Nov; 14(7):1110-8. PubMed ID: 25195797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant
    Mo H; Xie X; Zhu T; Lu X
    Biotechnol Biofuels; 2017; 10():145. PubMed ID: 28592994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Ethylene Production by Pseudomonas syringae and Ralstonia solanacearum.
    Weingart H; Völksch B; Ullrich MS
    Phytopathology; 1999 May; 89(5):360-5. PubMed ID: 18944747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The three nitric-oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme-dioxy reduction, and arginine hydroxylation.
    Wei CC; Wang ZQ; Durra D; Hemann C; Hille R; Garcin ED; Getzoff ED; Stuehr DJ
    J Biol Chem; 2005 Mar; 280(10):8929-35. PubMed ID: 15632185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two Distinct Mechanisms for C-C Desaturation by Iron(II)- and 2-(Oxo)glutarate-Dependent Oxygenases: Importance of α-Heteroatom Assistance.
    Dunham NP; Chang WC; Mitchell AJ; Martinie RJ; Zhang B; Bergman JA; Rajakovich LJ; Wang B; Silakov A; Krebs C; Boal AK; Bollinger JM
    J Am Chem Soc; 2018 Jun; 140(23):7116-7126. PubMed ID: 29708749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers.
    Woodson WR; Park KY; Drory A; Larsen PB; Wang H
    Plant Physiol; 1992 Jun; 99(2):526-32. PubMed ID: 16668918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation.
    Lai W; Shaik S
    J Am Chem Soc; 2011 Apr; 133(14):5444-52. PubMed ID: 21413763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.