These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37159255)
21. Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo. Yang J; Li Y; Liu Y; Li D; Zhang L; Wang Q; Xiao Y; Zhang X Acta Biomater; 2019 Jun; 91():159-172. PubMed ID: 31055122 [TBL] [Abstract][Full Text] [Related]
22. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. Shin J; Kang EH; Choi S; Jeon EJ; Cho JH; Kang D; Lee H; Yun IS; Cho SW ACS Biomater Sci Eng; 2021 Sep; 7(9):4230-4243. PubMed ID: 33538598 [TBL] [Abstract][Full Text] [Related]
23. Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis. Menezes R; Arinzeh TL Ann Biomed Eng; 2020 Jul; 48(7):2040-2052. PubMed ID: 32285342 [TBL] [Abstract][Full Text] [Related]
24. The effect of matrix stiffness on the chondrogenic differentiation of mesenchymal stem cells. Zhou Y; Qiu J; Wan L; Li J J Mol Histol; 2022 Oct; 53(5):805-816. PubMed ID: 36029427 [TBL] [Abstract][Full Text] [Related]
25. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues. Chen J; Chin A; Almarza AJ; Taboas JM Biomed Mater; 2020 May; 15(4):045006. PubMed ID: 31470441 [TBL] [Abstract][Full Text] [Related]
26. Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. Moura CS; Silva JC; Faria S; Fernandes PR; da Silva CL; Cabral JMS; Linhardt R; Bártolo PJ; Ferreira FC J Biosci Bioeng; 2020 Jun; 129(6):756-764. PubMed ID: 32107152 [TBL] [Abstract][Full Text] [Related]
27. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related]
28. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590 [TBL] [Abstract][Full Text] [Related]
29. The role of Sox9 in collagen hydrogel-mediated chondrogenic differentiation of adult mesenchymal stem cells (MSCs). Jiang X; Huang X; Jiang T; Zheng L; Zhao J; Zhang X Biomater Sci; 2018 May; 6(6):1556-1568. PubMed ID: 29696285 [TBL] [Abstract][Full Text] [Related]
30. Creating a Functional Biomimetic Cartilage Implant Using Hydrogels Based on Methacrylated Chondroitin Sulfate and Hyaluronic Acid. Schuiringa GH; Mihajlovic M; van Donkelaar CC; Vermonden T; Ito K Gels; 2022 Jul; 8(7):. PubMed ID: 35877542 [TBL] [Abstract][Full Text] [Related]
31. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282 [TBL] [Abstract][Full Text] [Related]
32. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881 [TBL] [Abstract][Full Text] [Related]
34. The synergistic regulation of chondrogenesis by collagen-based hydrogels and cell co-culture. Liu Q; Dai W; Gao Y; Dong L; Jia H; Li S; Guo L; Fan Y; Zhang X Acta Biomater; 2022 Dec; 154():194-211. PubMed ID: 36309191 [TBL] [Abstract][Full Text] [Related]
35. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Heirani-Tabasi A; Hosseinzadeh S; Rabbani S; Ahmadi Tafti SH; Jamshidi K; Soufizomorrod M; Soleimani M Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34144542 [TBL] [Abstract][Full Text] [Related]
36. The Combined Effect of Substrate Stiffness and Surface Topography on Chondrogenic Differentiation of Mesenchymal Stem Cells. Wu Y; Yang Z; Law JB; He AY; Abbas AA; Denslin V; Kamarul T; Hui JH; Lee EH Tissue Eng Part A; 2017 Jan; 23(1-2):43-54. PubMed ID: 27824280 [TBL] [Abstract][Full Text] [Related]
37. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. Rothrauff BB; Coluccino L; Gottardi R; Ceseracciu L; Scaglione S; Goldoni L; Tuan RS J Tissue Eng Regen Med; 2018 Jan; 12(1):e159-e170. PubMed ID: 28486778 [TBL] [Abstract][Full Text] [Related]
38. Chondroitin sulfate and dynamic loading alter chondrogenesis of human MSCs in PEG hydrogels. Steinmetz NJ; Bryant SJ Biotechnol Bioeng; 2012 Oct; 109(10):2671-82. PubMed ID: 22511184 [TBL] [Abstract][Full Text] [Related]
39. Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-beta 3 complexed with chondroitin sulfate. Park JS; Yang HJ; Woo DG; Yang HN; Na K; Park KH J Biomed Mater Res A; 2010 Feb; 92(2):806-16. PubMed ID: 19280636 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of novel biomaterials for cartilage regeneration based on gelatin methacryloyl interpenetrated with extractive chondroitin sulfate or unsulfated biotechnological chondroitin. Vassallo V; Tsianaka A; Alessio N; Grübel J; Cammarota M; Tovar GEM; Southan A; Schiraldi C J Biomed Mater Res A; 2022 Jun; 110(6):1210-1223. PubMed ID: 35088923 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]