These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37159322)

  • 21. Low-rank matrix approximation with manifold regularization.
    Zhang Z; Zhao K
    IEEE Trans Pattern Anal Mach Intell; 2013 Jul; 35(7):1717-29. PubMed ID: 23681998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast multi-view clustering via correntropy-based orthogonal concept factorization.
    Wu J; Yang B; Xue Z; Zhang X; Lin Z; Chen B
    Neural Netw; 2024 May; 173():106170. PubMed ID: 38387199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additional Neural Matrix Factorization model for computational drug repositioning.
    Yang X; Zamit L; Liu Y; He J
    BMC Bioinformatics; 2019 Aug; 20(1):423. PubMed ID: 31412762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Logistic Matrix Factorization.
    Wang A; Wang M
    Biomed Res Int; 2021; 2021():5599263. PubMed ID: 33855072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration.
    Wu G; Liu J; Wang C
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):79. PubMed ID: 29297383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-rank representation with adaptive graph regularization.
    Wen J; Fang X; Xu Y; Tian C; Fei L
    Neural Netw; 2018 Dec; 108():83-96. PubMed ID: 30173056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KGLRR: A low-rank representation K-means with graph regularization constraint method for Single-cell type identification.
    Wang LP; Liu JX; Shang JL; Kong XZ; Guan BX; Wang J
    Comput Biol Chem; 2023 Jun; 104():107862. PubMed ID: 37031647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A New Method Based on Matrix Completion and Non-Negative Matrix Factorization for Predicting Disease-Associated miRNAs.
    Gao Z; Wang YT; Wu QW; Li L; Ni JC; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):763-772. PubMed ID: 32991287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Microbe-Disease Association Prediction With Graph Regularized Non-Negative Matrix Factorization.
    He BS; Peng LH; Li Z
    Front Microbiol; 2018; 9():2560. PubMed ID: 30443240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying drug-pathway association pairs based on L1L2,1-integrative penalized matrix decomposition.
    Wang DQ; Gao YL; Liu JX; Zheng CH; Kong XZ
    Oncotarget; 2017 Jul; 8(29):48075-48085. PubMed ID: 28624800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. L
    Cui Z; Gao YL; Liu JX; Dai LY; Yuan SS
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):287. PubMed ID: 31182006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.
    Ma Y; Hu X; He T; Jiang X
    Methods; 2016 Dec; 111():80-84. PubMed ID: 27339941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization.
    Guan NN; Zhao Y; Wang CC; Li JQ; Chen X; Piao X
    Mol Ther Nucleic Acids; 2019 Sep; 17():164-174. PubMed ID: 31265947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction.
    Jamali AA; Kusalik A; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):586-594. PubMed ID: 34914594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting drug-disease associations by using similarity constrained matrix factorization.
    Zhang W; Yue X; Lin W; Wu W; Liu R; Huang F; Liu F
    BMC Bioinformatics; 2018 Jun; 19(1):233. PubMed ID: 29914348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting miRNA-Disease Association Based on Improved Graph Regression.
    Li L; Gao Z; Zheng CH; Qi R; Wang YT; Ni JC
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3604-3613. PubMed ID: 34757912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Neural Metric Factorization for Computational Drug Repositioning.
    Yang X; Yang G; Chu J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):731-741. PubMed ID: 35061591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Inductive Logistic Matrix Factorization Model for Predicting Drug-Metabolite Association With Vicus Regularization.
    Ma Y; Liu L; Chen Q; Ma Y
    Front Microbiol; 2021; 12():650366. PubMed ID: 33868209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning.
    Kim Y; Jung YS; Park JH; Kim SJ; Cho YR
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.