These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37159476)

  • 21. The impact of travelling on the COVID-19 infection cases in Germany.
    Schäfer M; Wijaya KP; Rockenfeller R; Götz T
    BMC Infect Dis; 2022 May; 22(1):455. PubMed ID: 35549671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal reproduction number with Bayesian model selection for evaluation of emerging infectious disease transmissibility: an application to COVID-19 national surveillance data.
    Rotejanaprasert C; Lawson AB; Maude RJ
    BMC Med Res Methodol; 2023 Mar; 23(1):62. PubMed ID: 36915077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The basic reproduction number of COVID-19 across Africa.
    Iyaniwura SA; Rabiu M; David JF; Kong JD
    PLoS One; 2022; 17(2):e0264455. PubMed ID: 35213645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global and local mobility as a barometer for COVID-19 dynamics.
    Linka K; Goriely A; Kuhl E
    Biomech Model Mechanobiol; 2021 Apr; 20(2):651-669. PubMed ID: 33449276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the Effective Reproduction Number (Rt) Estimation Methods of COVID-19 Using Simulation Data Based on Available Data from Iran, USA, UK, India, and Brazil.
    Karamoozian A; Bahrampour A
    J Res Health Sci; 2022 Oct; 22(3):e00559. PubMed ID: 36511377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On mobility trends analysis of COVID-19 dissemination in Mexico City.
    Prieto K; Chávez-Hernández MV; Romero-Leiton JP
    PLoS One; 2022; 17(2):e0263367. PubMed ID: 35143548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral changes before lockdown and decreased retail and recreation mobility during lockdown contributed most to controlling COVID-19 in Western countries.
    Deforche K; Vercauteren J; Müller V; Vandamme AM
    BMC Public Health; 2021 Apr; 21(1):654. PubMed ID: 33823820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative Strategies for the Estimation of a Disease's Basic Reproduction Number: A Model-Agnostic Study.
    Páez GN; Cerón JF; Cortés S; Quiroz AJ; Zea JF; Franco C; Cruz É; Vargas G; Castañeda C
    Bull Math Biol; 2021 Jul; 83(8):89. PubMed ID: 34216281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa.
    Musa SS; Zhao S; Wang MH; Habib AG; Mustapha UT; He D
    Infect Dis Poverty; 2020 Jul; 9(1):96. PubMed ID: 32678037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating the effective reproduction number for heterogeneous models using incidence data.
    Jorge DCP; Oliveira JF; Miranda JGV; Andrade RFS; Pinho STR
    R Soc Open Sci; 2022 Sep; 9(9):220005. PubMed ID: 36133147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A real-time regional model for COVID-19: Probabilistic situational awareness and forecasting.
    Engebretsen S; Diz-Lois Palomares A; Rø G; Kristoffersen AB; Lindstrøm JC; Engø-Monsen K; Kamineni M; Hin Chan LY; Dale Ø; Midtbø JE; Stenerud KL; Di Ruscio F; White R; Frigessi A; de Blasio BF
    PLoS Comput Biol; 2023 Jan; 19(1):e1010860. PubMed ID: 36689468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nine-month Trend of Time-Varying Reproduction Numbers of COVID-19 in West of Iran.
    Rahimi E; Hashemi Nazari SS; Mokhayeri Y; Sharhani A; Mohammadi R
    J Res Health Sci; 2021 Jun; 21(2):e00517. PubMed ID: 34465640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Explaining the effective reproduction number of COVID-19 through mobility and enterprise statistics: Evidence from the first wave in Japan.
    Kajitani Y; Hatayama M
    PLoS One; 2021; 16(3):e0247186. PubMed ID: 33735174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epidemicity of cholera spread and the fate of infection control measures.
    Trevisin C; Lemaitre JC; Mari L; Pasetto D; Gatto M; Rinaldo A
    J R Soc Interface; 2022 Mar; 19(188):20210844. PubMed ID: 35259956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the effect of Chinese control measures on COVID-19 via temporal reproduction number estimation.
    Chen D; Zhou T
    PLoS One; 2021; 16(2):e0246715. PubMed ID: 33571273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing.
    Leung K; Wu JT; Leung GM
    Nat Commun; 2021 Mar; 12(1):1501. PubMed ID: 33686075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of time-varying reproduction numbers underlying epidemiological processes: A new statistical tool for the COVID-19 pandemic.
    Hong HG; Li Y
    PLoS One; 2020; 15(7):e0236464. PubMed ID: 32692753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European countries.
    Karnakov P; Arampatzis G; Kičić I; Wermelinger F; Wälchli D; Papadimitriou C; Koumoutsakos P
    Swiss Med Wkly; 2020 Jul; 150():w20313. PubMed ID: 32677705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating Apple Inc Mobility Trend Data Related to the COVID-19 Outbreak in Japan: Statistical Analysis.
    Kurita J; Sugishita Y; Sugawara T; Ohkusa Y
    JMIR Public Health Surveill; 2021 Feb; 7(2):e20335. PubMed ID: 33481755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.