These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37159476)

  • 61. Estimation of COVID-19 basic reproduction ratio in a large urban jail in the United States.
    Puglisi LB; Malloy GSP; Harvey TD; Brandeau ML; Wang EA
    Ann Epidemiol; 2021 Jan; 53():103-105. PubMed ID: 32919033
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Predicting the effective reproduction number of COVID-19: inference using human mobility, temperature, and risk awareness.
    Jung SM; Endo A; Akhmetzhanov AR; Nishiura H
    Int J Infect Dis; 2021 Dec; 113():47-54. PubMed ID: 34628020
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology.
    Jiang G; Wu J; Weidhaas J; Li X; Chen Y; Mueller J; Li J; Kumar M; Zhou X; Arora S; Haramoto E; Sherchan S; Orive G; Lertxundi U; Honda R; Kitajima M; Jackson G
    Water Res; 2022 Jun; 218():118451. PubMed ID: 35447417
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tracking the transmission dynamics of COVID-19 with a time-varying coefficient state-space model.
    Keller JP; Zhou T; Kaplan A; Anderson GB; Zhou W
    Stat Med; 2022 Jul; 41(15):2745-2767. PubMed ID: 35322455
    [TBL] [Abstract][Full Text] [Related]  

  • 65. New Surveillance Metrics for Alerting Community-Acquired Outbreaks of Emerging SARS-CoV-2 Variants Using Imported Case Data: Bayesian Markov Chain Monte Carlo Approach.
    Yen AM; Chen TH; Chang WJ; Lin TY; Jen GH; Hsu CY; Wang ST; Dang H; Chen SL
    JMIR Public Health Surveill; 2022 Nov; 8(11):e40866. PubMed ID: 36265134
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multi-patch and multi-group epidemic models: a new framework.
    Bichara D; Iggidr A
    J Math Biol; 2018 Jul; 77(1):107-134. PubMed ID: 29149377
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new estimation method for COVID-19 time-varying reproduction number using active cases.
    Hasan A; Susanto H; Tjahjono V; Kusdiantara R; Putri E; Nuraini N; Hadisoemarto P
    Sci Rep; 2022 Apr; 12(1):6675. PubMed ID: 35461352
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of Adjustment for Case Misclassification and Infection Date Uncertainty on Estimates of COVID-19 Effective Reproduction Number.
    Goldstein ND; Quick H; Burstyn I
    Epidemiology; 2021 Nov; 32(6):800-806. PubMed ID: 34310444
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inferring the reproduction number using the renewal equation in heterogeneous epidemics.
    Green W; Ferguson N; Cori A
    J R Soc Interface; 2022 Mar; 19(188):20210429. PubMed ID: 35350879
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Forward-looking serial intervals correctly link epidemic growth to reproduction numbers.
    Park SW; Sun K; Champredon D; Li M; Bolker BM; Earn DJD; Weitz JS; Grenfell BT; Dushoff J
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33361331
    [TBL] [Abstract][Full Text] [Related]  

  • 71. EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number.
    Gressani O; Wallinga J; Althaus CL; Hens N; Faes C
    PLoS Comput Biol; 2022 Oct; 18(10):e1010618. PubMed ID: 36215319
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Determination of critical decision points for COVID-19 measures in Japan.
    Kim J; Matsunami K; Okamura K; Badr S; Sugiyama H
    Sci Rep; 2021 Aug; 11(1):16416. PubMed ID: 34385518
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Real-Time Estimation of
    Contreras S; Villavicencio HA; Medina-Ortiz D; Saavedra CP; Olivera-Nappa Á
    Front Public Health; 2020; 8():556689. PubMed ID: 33415091
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Memory is key in capturing COVID-19 epidemiological dynamics.
    Sofonea MT; Reyné B; Elie B; Djidjou-Demasse R; Selinger C; Michalakis Y; Alizon S
    Epidemics; 2021 Jun; 35():100459. PubMed ID: 34015676
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Detecting behavioural changes in human movement to inform the spatial scale of interventions against COVID-19.
    Gibbs H; Nightingale E; Liu Y; Cheshire J; Danon L; Smeeth L; Pearson CAB; Grundy C; ; Kucharski AJ; Eggo RM
    PLoS Comput Biol; 2021 Jul; 17(7):e1009162. PubMed ID: 34252085
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adaptive Susceptible-Infectious-Removed Model for Continuous Estimation of the COVID-19 Infection Rate and Reproduction Number in the United States: Modeling Study.
    Shapiro MB; Karim F; Muscioni G; Augustine AS
    J Med Internet Res; 2021 Apr; 23(4):e24389. PubMed ID: 33755577
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A non-parametric method for determining epidemiological reproduction numbers.
    Pijpers FP
    J Math Biol; 2021 Mar; 82(5):37. PubMed ID: 33721104
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China.
    Yang F; Yuan L; Tan X; Huang C; Feng J
    Ann Epidemiol; 2013 Jun; 23(6):301-6. PubMed ID: 23683708
    [TBL] [Abstract][Full Text] [Related]  

  • 80. COVID-19 non-pharmaceutical intervention portfolio effectiveness and risk communication predominance.
    Chan LYH; Yuan B; Convertino M
    Sci Rep; 2021 May; 11(1):10605. PubMed ID: 34012040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.