BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37159706)

  • 1. FeMn and FeMnAg biodegradable alloys: An
    Saliba L; Sammut K; Tonna C; Pavli F; Valdramidis V; Gatt R; Giordmaina R; Camilleri L; Atanasio W; Buhagiar J; Schembri Wismayer P
    Heliyon; 2023 May; 9(5):e15671. PubMed ID: 37159706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.
    Drynda A; Hassel T; Bach FW; Peuster M
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):649-60. PubMed ID: 24976236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of 4%Fe on the Performance of Pure Zinc as Biodegradable Implant Material.
    Kafri A; Ovadia S; Yosafovich-Doitch G; Aghion E
    Ann Biomed Eng; 2019 Jun; 47(6):1400-1408. PubMed ID: 30850910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications.
    Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J
    Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications.
    Cho DH; Avey T; Nam KH; Dean D; Luo AA
    Acta Biomater; 2022 Sep; 150():442-455. PubMed ID: 35914693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications.
    Jia B; Yang H; Han Y; Zhang Z; Qu X; Zhuang Y; Wu Q; Zheng Y; Dai K
    Acta Biomater; 2020 May; 108():358-372. PubMed ID: 32165194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications.
    Bian D; Zhou W; Deng J; Liu Y; Li W; Chu X; Xiu P; Cai H; Kou Y; Jiang B; Zheng Y
    Acta Biomater; 2017 Dec; 64():421-436. PubMed ID: 28987782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications.
    Xu Y; Wang W; Yu F; Yang S; Yuan Y; Wang Y
    Acta Biomater; 2023 Apr; 161():309-323. PubMed ID: 36858165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications.
    Munir K; Lin J; Wen C; Wright PFA; Li Y
    Acta Biomater; 2020 Jan; 102():493-507. PubMed ID: 31811958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Zn-Dy binary alloys with high strength, ductility, cytocompatibility, and antibacterial ability for bone-implant applications.
    Tong X; Han Y; Zhou R; Jiang W; Zhu L; Li Y; Huang S; Ma J; Wen C; Lin J
    Acta Biomater; 2023 Jan; 155():684-702. PubMed ID: 36328128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials.
    Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C
    Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of strain on degradation behaviors of WE43, Fe and Zn wires.
    Chen K; Lu Y; Tang H; Gao Y; Zhao F; Gu X; Fan Y
    Acta Biomater; 2020 Sep; 113():627-645. PubMed ID: 32574860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
    Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN
    Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of degradation behaviour and biocompatibility of Zn-Fe alloy prepared by electrodeposition.
    He J; Li DW; He FL; Liu YY; Liu YL; Zhang CY; Ren F; Ye YJ; Deng XD; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111295. PubMed ID: 32919656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.
    Wang H; Zheng Y; Liu J; Jiang C; Li Y
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():60-66. PubMed ID: 27987750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications.
    Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M
    Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications.
    Lin J; Tong X; Shi Z; Zhang D; Zhang L; Wang K; Wei A; Jin L; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Apr; 106():410-427. PubMed ID: 32068137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biodegradable Fe/Zn-3Cu composite with requisite properties for orthopedic applications.
    Tong X; Zhu L; Wu Y; Song Y; Wang K; Huang S; Li Y; Ma J; Wen C; Lin J
    Acta Biomater; 2022 Jul; 146():506-521. PubMed ID: 35523413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.