These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3715974)

  • 1. [The physiological determinants of the parallelism (unity) of histological structures].
    Natochin IuV
    Tsitologiia; 1986 Mar; 28(3):276-84. PubMed ID: 3715974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative renal physiology of exotic species.
    Raidal SR; Raidal SL
    Vet Clin North Am Exot Anim Pract; 2006 Jan; 9(1):13-31. PubMed ID: 16407078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vascular biological stereotype and the achievement problem of the neurohumoral integration during phylogenesis.
    Mârza VD
    Anat Anz; 1982; 152(3):275-91. PubMed ID: 6130723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative renal anatomy of exotic species.
    Holz PH; Raidal SR
    Vet Clin North Am Exot Anim Pract; 2006 Jan; 9(1):1-11. PubMed ID: 16407077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between specialized cells, capillaries and intermediary cytofibrillary elements. XIth note. Biological evolution of the emunctory subsystem and stereotype in vertebrates.
    Mârza VD
    Morphol Embryol (Bucur); 1978; 24(4):283-304. PubMed ID: 155197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormonal control of salt and water balance in vertebrates.
    McCormick SD; Bradshaw D
    Gen Comp Endocrinol; 2006 May; 147(1):3-8. PubMed ID: 16457828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Principles of functional evolution at the cellular, organ and organism levels (exemplified by the kidney and water-salt homeostasis)].
    Natochin IuV
    Zh Obshch Biol; 1988; 49(3):291-303. PubMed ID: 3051774
    [No Abstract]   [Full Text] [Related]  

  • 8. [Integration of mechanisms regulating water-salt equilibrium during increasing water, salt, and volume loading].
    Aĭzman RI; Antonenko NP; Velikanova LK
    Fiziol Zh SSSR Im I M Sechenova; 1980 Sep; 66(9):1404-11. PubMed ID: 7418918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relevance of cell microenvironments for the appearance of lympho-haemopoietic tissues in primitive vertebrates.
    Zapata AG; Torroba M; Vicente A; Varas A; Sacedón R; Jiménez E
    Histol Histopathol; 1995 Jul; 10(3):761-78. PubMed ID: 7579826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between specialized cells, capillaries and intermediary cytofibrillary elements. Xth Note. Biological evolution of the emonctory subsystem and stereotype in invertebrates.
    Mârza VD
    Morphol Embryol (Bucur); 1978; 24(1):3-17. PubMed ID: 147410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective.
    Hartenstein V
    J Endocrinol; 2006 Sep; 190(3):555-70. PubMed ID: 17003257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of the endothelial cells: an evo-devo approach for the invertebrate/vertebrate transition of the circulatory system.
    Muñoz-Chápuli R; Carmona R; Guadix JA; Macías D; Pérez-Pomares JM
    Evol Dev; 2005; 7(4):351-8. PubMed ID: 15982372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and tissue distribution of prolactin receptor mRNA in Japanese flounder (Paralichtys olivaceus): conserved and preferential expression in osmoregulatory organs.
    Higashimoto Y; Nakao N; Ohkubo T; Tanaka M; Nakashima K
    Gen Comp Endocrinol; 2001 Aug; 123(2):170-9. PubMed ID: 11482938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural characteristics of renal corpuscle evolution in vertebrates.
    Melman EP; Kovalchuk LE; Shutka BV; Lotovskaya RN
    Anat Anz; 1991; 172(2):159-64. PubMed ID: 2048745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolutionary ecology of offspring size in marine invertebrates.
    Marshall DJ; Keough MJ
    Adv Mar Biol; 2007; 53():1-60. PubMed ID: 17936135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The retinoic acid machinery in invertebrates: ancestral elements and vertebrate innovations.
    Albalat R
    Mol Cell Endocrinol; 2009 Dec; 313(1-2):23-35. PubMed ID: 19737598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and intriguing problems in comparative renal physiology.
    Dantzler WH
    J Exp Biol; 2005 Feb; 208(Pt 4):587-94. PubMed ID: 15695751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive strategies for post-renal handling of urine in birds.
    Laverty G; Skadhauge E
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Mar; 149(3):246-54. PubMed ID: 18276178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume regulatory action of central angiotensin II in the duck.
    Gerstberger R; Gray DA; Simon E
    J Physiol (Paris); 1984; 79(6):518-23. PubMed ID: 6536753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modes and regulation of glial migration in vertebrates and invertebrates.
    Klämbt C
    Nat Rev Neurosci; 2009 Nov; 10(11):769-79. PubMed ID: 19773781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.