BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37160106)

  • 1. Biophysical modeling of the electric field magnitude and distribution induced by electrical stimulation with intracerebral electrodes.
    Alonso F; Mercadal B; Salvador R; Ruffini G; Bartolomei F; Wendling F; Modolo J
    Biomed Phys Eng Express; 2023 Jun; 9(4):. PubMed ID: 37160106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control.
    Iredale E; Voigt B; Rankin A; Kim KW; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2022 Sep; 49(9):6055-6067. PubMed ID: 35754362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial Electrical Stimulation generates electric fields in deep human brain structures.
    Louviot S; Tyvaert L; Maillard LG; Colnat-Coulbois S; Dmochowski J; Koessler L
    Brain Stimul; 2022; 15(1):1-12. PubMed ID: 34742994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of multi-electrode implant configurations and programming for the delivery of non-ablative electric fields in intratumoral modulation therapy.
    Iredale E; Deweyert A; Hoover DA; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2020 Nov; 47(11):5441-5454. PubMed ID: 32978963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Impact of Electrode/Tissue Geometry on Electrical Stimulation in Stereo-EEG.
    Shindhelm AC; Thio BJ; Sinha SR
    J Clin Neurophysiol; 2023 May; 40(4):339-349. PubMed ID: 34482315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical Modeling for Brain Tissue Conductivity Estimation Using SEEG Electrodes.
    Carvallo A; Modolo J; Benquet P; Lagarde S; Bartolomei F; Wendling F
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1695-1704. PubMed ID: 30369435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key factors in the cortical response to transcranial electrical Stimulations-A multi-scale modeling study.
    Chung H; Im C; Seo H; Jun SC
    Comput Biol Med; 2022 May; 144():105328. PubMed ID: 35231800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the importance of electrode parameters for shaping electric field patterns generated by tDCS.
    Saturnino GB; Antunes A; Thielscher A
    Neuroimage; 2015 Oct; 120():25-35. PubMed ID: 26142274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.
    Manoli Z; Parazzini M; Ravazzani P; Samaras T
    Med Phys; 2017 Jan; 44(1):262-271. PubMed ID: 28044315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements on spatial coverage and focality of deep brain stimulation in pre-surgical epilepsy mapping.
    Collavini S; Fernández-Corazza M; Oddo S; Princich JP; Kochen S; Muravchik CH
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33578398
    [No Abstract]   [Full Text] [Related]  

  • 13. Understanding the Effects and Adverse Reactions of Deep Brain Stimulation: Is It Time for a Paradigm Shift Toward a Focus on Heterogenous Biophysical Tissue Properties Instead of Electrode Design Only?
    Ineichen C; Shepherd NR; Sürücü O
    Front Hum Neurosci; 2018; 12():468. PubMed ID: 30538625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An
    Lu Z; Zhou M; Guo T; Liang J; Wu W; Gao Q; Li L; Li H; Chai X
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36044887
    [No Abstract]   [Full Text] [Related]  

  • 15. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation.
    Mahnič-Kalamiza S; Kotnik T; Miklavčič D
    BMC Med Educ; 2012 Oct; 12():102. PubMed ID: 23107609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electric field direction on neuronal activity: an ex-vivo study
    Jain V; Forssell M; Chamanzar M; Grover P
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations.
    Corović S; Pavlin M; Miklavcic D
    Biomed Eng Online; 2007 Oct; 6():37. PubMed ID: 17937793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric field distributions in realistic 3D rat head models during alternating electric field (AEF) therapy: a computational study.
    Nguyen H; Schubert KE; Chang E; Nie Y; Pohling C; Van Buskirk S; Yamamoto V; Zeng Y; Schulte RW; Patel CB
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37703902
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.