BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37160106)

  • 21. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimized multi-electrode stimulation increases focality and intensity at target.
    Dmochowski JP; Datta A; Bikson M; Su Y; Parra LC
    J Neural Eng; 2011 Aug; 8(4):046011. PubMed ID: 21659696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.
    Bhattacharyya PK; Mullin J; Lee BS; Gonzalez-Martinez JA; Jones SE
    Magn Reson Imaging; 2017 May; 38():182-188. PubMed ID: 28104438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dimensional scaling of thin-film stimulation electrode systems in translational research.
    Schiavone G; Vachicouras N; Vyza Y; Lacour SP
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33831857
    [No Abstract]   [Full Text] [Related]  

  • 25. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling.
    Im CH; Park JH; Shim M; Chang WH; Kim YH
    Phys Med Biol; 2012 Apr; 57(8):2137-50. PubMed ID: 22452936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling implanted metals in electrical stimulation applications.
    Mercadal B; Salvador R; Biagi MC; Bartolomei F; Wendling F; Ruffini G
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35172293
    [No Abstract]   [Full Text] [Related]  

  • 28. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.
    Santos L; Martinho M; Salvador R; Wenger C; Fernandes SR; Ripolles O; Ruffini G; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1778-1781. PubMed ID: 28268672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational study on subdural cortical stimulation - the influence of the head geometry, anisotropic conductivity, and electrode configuration.
    Kim D; Seo H; Kim HI; Jun SC
    PLoS One; 2014; 9(9):e108028. PubMed ID: 25229673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element analysis of the current-density and electric field generated by metal microelectrodes.
    McIntyre CC; Grill WM
    Ann Biomed Eng; 2001 Mar; 29(3):227-35. PubMed ID: 11310784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contemporaneous evaluation of patient experience, surgical strategy, and seizure outcomes in patients undergoing stereoelectroencephalography or subdural electrode monitoring.
    Kim LH; Parker JJ; Ho AL; Feng AY; Kumar KK; Chen KS; Ojukwu DI; Shuer LM; Grant GA; Graber KD; Halpern CH
    Epilepsia; 2021 Jan; 62(1):74-84. PubMed ID: 33236777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
    Howell B; Naik S; Grill WM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcranial direct current stimulation in patients after decompressive craniectomy: a finite element model to investigate factors affecting the cortical electric field.
    Sun W; Dong X; Yu G; Shuai L; Yuan Y; Ma C
    J Int Med Res; 2021 Feb; 49(2):300060520942112. PubMed ID: 33788619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Finite element analysis of electric field of extracellular stimulation of optic nerve with a spiral cuff electrode].
    Guo H; Qiao Q; Luo F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):820-4. PubMed ID: 23198414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrode and brain modeling in stereo-EEG.
    von Ellenrieder N; Beltrachini L; Muravchik CH
    Clin Neurophysiol; 2012 Sep; 123(9):1745-54. PubMed ID: 22364724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EView: An electric field visualization web platform for electroporation-based therapies.
    Perera-Bel E; Yagüe C; Mercadal B; Ceresa M; Beitel-White N; Davalos RV; Ballester MAG; Ivorra A
    Comput Methods Programs Biomed; 2020 Dec; 197():105682. PubMed ID: 32795723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IntrAnat Electrodes: A Free Database and Visualization Software for Intracranial Electroencephalographic Data Processed for Case and Group Studies.
    Deman P; Bhattacharjee M; Tadel F; Job AS; Rivière D; Cointepas Y; Kahane P; David O
    Front Neuroinform; 2018; 12():40. PubMed ID: 30034332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternating Electric Fields Modify the Function of Human Osteoblasts Growing on and in the Surroundings of Titanium Electrodes.
    Sahm F; Ziebart J; Jonitz-Heincke A; Hansmann D; Dauben T; Bader R
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models.
    Caulfield KA; George MS
    Sci Rep; 2022 Nov; 12(1):20116. PubMed ID: 36418438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.