These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37160130)

  • 1. A critical review on orthosilicate Li
    Pateriya RV; Tanwar S; Sharma AL
    J Phys Condens Matter; 2023 May; 35(34):. PubMed ID: 37160130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano/micro lithium transitionmetal (Fe, Mn, Co and Ni) silicate cathode materials for lithium ion batteries.
    Zhang Q; Zhao Y; Su C; Li M
    Recent Pat Nanotechnol; 2011 Nov; 5(3):225-33. PubMed ID: 21777180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Custom designed nanocrystalline Li2MSiO4/reduced graphene oxide (M = Fe, Mn) formulations as high capacity cathodes for rechargeable lithium batteries.
    Bhuvaneswari D; Kalaiselvi N
    Dalton Trans; 2014 Dec; 43(48):18097-103. PubMed ID: 25354932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphism and magnetic properties of Li2MSiO4 (M = Fe, Mn) cathode materials.
    Bini M; Ferrari S; Ferrara C; Mozzati MC; Capsoni D; Pell AJ; Pintacuda G; Canton P; Mustarelli P
    Sci Rep; 2013 Dec; 3():3452. PubMed ID: 24316682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemistry of orthosilicate-based lithium battery cathodes: a perspective.
    Ferrari S; Capsoni D; Casino S; Destro M; Gerbaldi C; Bini M
    Phys Chem Chem Phys; 2014 Jun; 16(22):10353-66. PubMed ID: 24764049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ab initio investigation of Li2M(0.5)N(0.5)SiO4 (M, N = Mn, Fe, Co Ni) as Li-ion battery cathode materials.
    Kalantarian MM; Asgari S; Capsoni D; Mustarelli P
    Phys Chem Chem Phys; 2013 Jun; 15(21):8035-41. PubMed ID: 23608945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and electrochemical performances of co-substituted LiCo(x)Li(x-y)Mn(2-x)O4 cathode materials for the rechargeable lithium ion batteries.
    Mohan P; Kalaignan GP
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6694-700. PubMed ID: 24245131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Cl Doping on Electrochemical Performance in Orthosilicate (Li
    Singh S; Raj AK; Sen R; Johari P; Mitra S
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26885-26896. PubMed ID: 28721729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Li2MnSiO4-graphene composite and its electrochemical performances as a cathode material for lithium ion batteries.
    Kim J; Song T; Park H; Yuh J; Paik U
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7898-902. PubMed ID: 25942889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.
    Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD
    Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O
    Xu J; Ma J; Fan Q; Guo S; Dou S
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28488763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials.
    Ferrari S; Mozzati MC; Lantieri M; Spina G; Capsoni D; Bini M
    Sci Rep; 2016 Jun; 6():27896. PubMed ID: 27293181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries.
    Ding C; Chen Z; Cao C; Liu Y; Gao Y
    Nanomicro Lett; 2023 Aug; 15(1):192. PubMed ID: 37555908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Electrochemical Activity of Monoclinic Li
    Shree Kesavan K; Michael MS; Prabaharan SRS
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28868-28877. PubMed ID: 31314488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of LiMPO
    Kanungo S; Bhattacharjee A; Bahadursha N; Ghosh A
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary studies of mn-rich Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, 0.11) as cathode active materials for lithium rechargeable batteries.
    Vediappan K; Park SJ; Kim HS; Lee CW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):865-70. PubMed ID: 21446563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries.
    Wu F; Zhang X; Zhao T; Li L; Xie M; Chen R
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3773-81. PubMed ID: 25629768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.