These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 37160225)

  • 41. C4 photosynthesis boosts growth by altering physiology, allocation and size.
    Atkinson RR; Mockford EJ; Bennett C; Christin PA; Spriggs EL; Freckleton RP; Thompson K; Rees M; Osborne CP
    Nat Plants; 2016 Apr; 2(5):16038. PubMed ID: 27243645
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops.
    Razi K; Muneer S
    Crit Rev Biotechnol; 2021 Aug; 41(5):669-691. PubMed ID: 33525946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reconciling continuous and discrete models of C4 and CAM evolution.
    Edwards EJ
    Ann Bot; 2023 Nov; 132(4):717-725. PubMed ID: 37675944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The evolutionary ecology of C4 plants.
    Christin PA; Osborne CP
    New Phytol; 2014 Dec; 204(4):765-81. PubMed ID: 25263843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How succulent leaves of Aizoaceae avoid mesophyll conductance limitations of photosynthesis and survive drought.
    Ripley BS; Abraham T; Klak C; Cramer MD
    J Exp Bot; 2013 Dec; 64(18):5485-96. PubMed ID: 24127513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.
    DePaoli HC; Borland AM; Tuskan GA; Cushman JC; Yang X
    J Exp Bot; 2014 Jul; 65(13):3381-93. PubMed ID: 24567493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water exchange between the Chlorenchyma and the Hydrenchyma and its physiological role in leaves with Crassulacean acid metabolism.
    Cabrita PJV
    Physiol Plant; 2024; 176(2):e14221. PubMed ID: 38450837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.
    Shao HB; Chu LY; Jaleel CA; Manivannan P; Panneerselvam R; Shao MA
    Crit Rev Biotechnol; 2009; 29(2):131-51. PubMed ID: 19412828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative genomics analysis of drought response between obligate CAM and C
    Hu R; Zhang J; Jawdy S; Sreedasyam A; Lipzen A; Wang M; Ng V; Daum C; Keymanesh K; Liu D; Lu H; Ranjan P; Chen JG; Muchero W; Tschaplinski TJ; Tuskan GA; Schmutz J; Yang X
    J Plant Physiol; 2022 Oct; 277():153791. PubMed ID: 36027837
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering crassulacean acid metabolism to improve water-use efficiency.
    Borland AM; Hartwell J; Weston DJ; Schlauch KA; Tschaplinski TJ; Tuskan GA; Yang X; Cushman JC
    Trends Plant Sci; 2014 May; 19(5):327-38. PubMed ID: 24559590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The CAM lineages of planet Earth.
    Gilman IS; Smith JAC; Holtum JAM; Sage RF; Silvera K; Winter K; Edwards EJ
    Ann Bot; 2023 Nov; 132(4):627-654. PubMed ID: 37698538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands.
    Borland AM; Griffiths H; Hartwell J; Smith JA
    J Exp Bot; 2009; 60(10):2879-96. PubMed ID: 19395392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shifts in gene expression profiles are associated with weak and strong Crassulacean acid metabolism.
    Heyduk K; Ray JN; Ayyampalayam S; Leebens-Mack J
    Am J Bot; 2018 Mar; 105(3):587-601. PubMed ID: 29746718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alternative Crassulacean Acid Metabolism Modes Provide Environment-Specific Water-Saving Benefits in a Leaf Metabolic Model.
    Töpfer N; Braam T; Shameer S; Ratcliffe RG; Sweetlove LJ
    Plant Cell; 2020 Dec; 32(12):3689-3705. PubMed ID: 33093147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The genetics of convergent evolution: insights from plant photosynthesis.
    Heyduk K; Moreno-Villena JJ; Gilman IS; Christin PA; Edwards EJ
    Nat Rev Genet; 2019 Aug; 20(8):485-493. PubMed ID: 30886351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptome profiling reveals that foliar water uptake occurs with C
    Yan X; Chang Y; Zhao W; Qian C; Yin X; Fan X; Zhu X; Zhao X; Ma XF
    AoB Plants; 2022 Feb; 14(1):plab060. PubMed ID: 35047161
    [No Abstract]   [Full Text] [Related]  

  • 57. Identification and characterization of pineapple leaf lncRNAs in crassulacean acid metabolism (CAM) photosynthesis pathway.
    Bai Y; Dai X; Li Y; Wang L; Li W; Liu Y; Cheng Y; Qin Y
    Sci Rep; 2019 Apr; 9(1):6658. PubMed ID: 31040312
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facultative crassulacean acid metabolism in a C3-C4 intermediate.
    Winter K; Sage RF; Edwards EJ; Virgo A; Holtum JAM
    J Exp Bot; 2019 Nov; 70(22):6571-6579. PubMed ID: 30820551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.
    Schuler ML; Mantegazza O; Weber AP
    Plant J; 2016 Jul; 87(1):51-65. PubMed ID: 26945781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New evidence for grain specific C4 photosynthesis in wheat.
    Rangan P; Furtado A; Henry RJ
    Sci Rep; 2016 Aug; 6():31721. PubMed ID: 27530078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.