These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37160228)

  • 21. Towards integrated drug substance and drug product design for an active pharmaceutical ingredient using particle engineering.
    Kougoulos E; Smales I; Verrier HM
    AAPS PharmSciTech; 2011 Mar; 12(1):287-94. PubMed ID: 21246419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining crystalline and polymeric excipients in API solid dispersions - Opportunity or risk?
    Veith H; Wiechert F; Luebbert C; Sadowski G
    Eur J Pharm Biopharm; 2021 Jan; 158():323-335. PubMed ID: 33296719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seeded droplet microfluidic system for small molecule crystallization.
    Garg N; Tona R; Martin P; Martin-Soladana PM; Ward G; Douillet N; Lai D
    Lab Chip; 2020 May; 20(10):1815-1826. PubMed ID: 32322845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design.
    Ticehurst MD; Marziano I
    J Pharm Pharmacol; 2015 Jun; 67(6):782-802. PubMed ID: 25677227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic droplet liquid reactors for active pharmaceutical ingredient crystallization by diffusion controlled solvent extraction.
    Tona RM; McDonald TAO; Akhavein N; Larkin JD; Lai D
    Lab Chip; 2019 Jun; 19(12):2127-2137. PubMed ID: 31114833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel co-processing method to manufacture an API for extended release formulation via formation of agglomerates of active ingredient and hydroxypropyl methylcellulose during crystallization.
    Rosenbaum T; Erdemir D; Chang SY; Kientzler D; Wang S; Chan SH; Brown J; Hanley S; Kiang S
    Drug Dev Ind Pharm; 2018 Oct; 44(10):1606-1612. PubMed ID: 29916275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of micromeritic properties of an active pharmaceutical ingredient on its compaction behavior.
    Bindra DS; Desikan S
    Pharm Dev Technol; 2015 Mar; 20(2):129-38. PubMed ID: 24219704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of ultrasound in the crystallization process of an active pharmaceutical ingredient.
    Belca LM; Ručigaj A; Teslič D; Krajnc M
    Ultrason Sonochem; 2019 Nov; 58():104642. PubMed ID: 31450288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling Microparticle Morphology in Melt-Jet Printing of Active Pharmaceutical Ingredients through Surface Phenomena.
    Bornstein S; Uziel A; Lewitus DY
    Pharmaceutics; 2023 Jul; 15(8):. PubMed ID: 37631240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of apigenin nanoparticles using antisolvent crystallization technology: A comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies.
    Yan T; Wang H; Song X; Yan T; Ding Y; Luo K; Zhen J; He G; Nian L; Wang S; Wang Z
    Int J Pharm; 2022 Aug; 624():121981. PubMed ID: 35792228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solubility Enhancement of Antidiabetic Drugs Using a Co-Crystallization Approach.
    Batisai E
    ChemistryOpen; 2021 Dec; 10(12):1260-1268. PubMed ID: 34921592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle engineering at the drug substance, drug product interface: a comprehensive platform approach to enabling continuous drug substance to drug product processing with differentiated material properties.
    Schenck L; Koynov A; Cote A
    Drug Dev Ind Pharm; 2019 Apr; 45(4):521-531. PubMed ID: 30609381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Terahertz-spectroscopy for non-destructive determination of crystallinity of L-tartaric acid in smartFilms® and tablets made from paper.
    Ornik J; Knoth D; Koch M; Keck CM
    Int J Pharm; 2020 May; 581():119253. PubMed ID: 32217156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Vitro and In Vivo Characterization of Drug Nanoparticles Prepared Using PureNano™ Continuous Crystallizer to Improve the Bioavailability of Poorly Water Soluble Drugs.
    Tahara K; Nishikawa M; Matsui K; Hisazumi K; Onodera R; Tozuka Y; Takeuchi H
    Pharm Res; 2016 Sep; 33(9):2259-68. PubMed ID: 27301372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of Ibuprofen Microparticles by Antisolvent Precipitation Crystallization Technique: Characterization, Formulation, and In Vitro Performance.
    Afrose A; White ET; Howes T; George G; Rashid A; Rintoul L; Islam N
    J Pharm Sci; 2018 Dec; 107(12):3060-3069. PubMed ID: 30098991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coamorphous Active Pharmaceutical Ingredient-Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability.
    Newman A; Reutzel-Edens SM; Zografi G
    J Pharm Sci; 2018 Jan; 107(1):5-17. PubMed ID: 28989014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining Isolation-Free and Co-Processing Manufacturing Approaches to Access Room Temperature Ionic Liquid Forms of APIs.
    Stocker MW; Tsolaki E; Harding MJ; Healy AM; Ferguson S
    J Pharm Sci; 2023 Aug; 112(8):2079-2086. PubMed ID: 36806585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing.
    Theil F; Milsmann J; Anantharaman S; van Lishaut H
    Mol Pharm; 2018 May; 15(5):1870-1877. PubMed ID: 29648833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmaceutical cocrystals: a novel approach for oral bioavailability enhancement of drugs.
    Chadha R; Saini A; Arora P; Bhandari S
    Crit Rev Ther Drug Carrier Syst; 2012; 29(3):183-218. PubMed ID: 22577957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation.
    Pinkerton NM; Grandeury A; Fisch A; Brozio J; Riebesehl BU; Prud'homme RK
    Mol Pharm; 2013 Jan; 10(1):319-28. PubMed ID: 23259920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.