These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37160508)

  • 21. Particle-cell contact enhances antibacterial activity of silver nanoparticles.
    Bondarenko O; Ivask A; Käkinen A; Kurvet I; Kahru A
    PLoS One; 2013; 8(5):e64060. PubMed ID: 23737965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparable antibacterial effects and action mechanisms of silver and iron oxide nanoparticles on Escherichia coli and Salmonella typhimurium.
    Gabrielyan L; Badalyan H; Gevorgyan V; Trchounian A
    Sci Rep; 2020 Aug; 10(1):13145. PubMed ID: 32753725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promising antimicrobial and antibiofilm activities of Orobanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: Effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study.
    Mostafa HY; El-Sayyad GS; Nada HG; Ellethy RA; Zaki EG
    Arch Biochem Biophys; 2023 Mar; 736():109539. PubMed ID: 36746259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles.
    Van Viet P; Sang TT; Bich NHN; Thi CM
    J Photochem Photobiol B; 2018 May; 182():108-114. PubMed ID: 29656219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of bicarbonate on physiochemical properties of silver nanoparticles and toxicity to Escherichia coli.
    Yuan B; Sui M; Qin J; Wang J; Lu H
    J Colloid Interface Sci; 2019 Mar; 539():297-305. PubMed ID: 30590237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide.
    Lv Y; Li L; Yin P; Lei T
    Dalton Trans; 2020 Apr; 49(15):4699-4709. PubMed ID: 32202585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study.
    Heinlaan M; Muna M; Knöbel M; Kistler D; Odzak N; Kühnel D; Müller J; Gupta GS; Kumar A; Shanker R; Sigg L
    Environ Pollut; 2016 Sep; 216():689-699. PubMed ID: 27357482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods.
    Samberg ME; Orndorff PE; Monteiro-Riviere NA
    Nanotoxicology; 2011 Jun; 5(2):244-53. PubMed ID: 21034371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli.
    Moniri Javadhesari S; Alipour S; Mohammadnejad S; Akbarpour MR
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110011. PubMed ID: 31546455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silver nanoparticles modified hFGF2-linking camelina oil bodies accelerate infected wound healing.
    Liu H; Ding M; Wang H; Chen Y; Liu Y; Wei L; Cui X; Han Y; Zhang B; Zou T; Zhang Y; Li H; Chen R; Liu X; Cheng Y
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113089. PubMed ID: 36527806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability.
    Zhang D; Chen L; Zang C; Chen Y; Lin H
    Carbohydr Polym; 2013 Feb; 92(2):2088-94. PubMed ID: 23399262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli.
    Choi Y; Kim HA; Kim KW; Lee BT
    J Environ Sci (China); 2018 Apr; 66():50-60. PubMed ID: 29628108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells.
    Sathiyavimal S; F Durán-Lara E; Vasantharaj S; Saravanan M; Sabour A; Alshiekheid M; Lan Chi NT; Brindhadevi K; Pugazhendhi A
    Food Chem Toxicol; 2022 Oct; 168():113330. PubMed ID: 35926645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using
    Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR
    Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibacterial cellulose paper made with silver-coated gold nanoparticles.
    Tsai TT; Huang TH; Chang CJ; Yi-Ju Ho N; Tseng YT; Chen CF
    Sci Rep; 2017 Jun; 7(1):3155. PubMed ID: 28600506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Comparative Sensitivity of the Luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis Strains to Toxic Effects of Carbon-Based Nanomaterials and Metal Nanoparticles].
    Deryabina DG; Efremova LV; Karimov IF; Manukhov IV; Gnuchikh EY; Miroshnikov SA
    Mikrobiologiia; 2016; 85(2):177-86. PubMed ID: 27476206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action.
    Gabrielyan L; Trchounian A
    World J Microbiol Biotechnol; 2019 Oct; 35(10):162. PubMed ID: 31612285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of glutathione-stabilized silver nanoparticles on expression of las I and las R of the genes in Pseudomonas aeruginosa strains.
    Pourmbarak Mahnaie M; Mahmoudi H
    Eur J Med Res; 2020 May; 25(1):17. PubMed ID: 32434568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis of silver nanoparticles using extracts of Stevia rebaudiana and evaluation of antibacterial activity.
    Timotina M; Aghajanyan A; Schubert R; Trchounian K; Gabrielyan L
    World J Microbiol Biotechnol; 2022 Aug; 38(11):196. PubMed ID: 35989355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles.
    Alzahrani KE; Niazy AA; Alswieleh AM; Wahab R; El-Toni AM; Alghamdi HS
    Int J Nanomedicine; 2018; 13():77-87. PubMed ID: 29317817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.