BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37160615)

  • 1. A Review on Interface Engineering of MXenes for Perovskite Solar Cells.
    Palei S; Murali G; Kim CH; In I; Lee SY; Park SJ
    Nanomicro Lett; 2023 May; 15(1):123. PubMed ID: 37160615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering.
    Qamar S; Fatima K; Ullah N; Akhter Z; Waseem A; Sultan M
    Nanoscale; 2022 Sep; 14(36):13018-13039. PubMed ID: 36065967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of MXenes in Perovskite Solar Cells: A Short Review.
    Shah SAA; Sayyad MH; Khan K; Sun J; Guo Z
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-functional MXene quantum dots enhance the quality of perovskite polycrystalline films and charge transport for solar cells.
    Nie J; Niu B; Wang Y; He Z; Zhang X; Zheng H; Lei Y; Zhong P; Ma X
    J Colloid Interface Sci; 2023 Sep; 646():517-528. PubMed ID: 37209551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular materials as interfacial layers and additives in perovskite solar cells.
    Vasilopoulou M; Fakharuddin A; Coutsolelos AG; Falaras P; Argitis P; Yusoff ARBM; Nazeeruddin MK
    Chem Soc Rev; 2020 Jul; 49(13):4496-4526. PubMed ID: 32495754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dawn of MXene duo: revolutionizing perovskite solar cells with MXenes through computational and experimental methods.
    Marimuthu S; Prabhakaran Shyma A; Sathyanarayanan S; Gopal T; James JT; Nagalingam SP; Gunaseelan B; Babu S; Sellappan R; Grace AN
    Nanoscale; 2024 May; 16(21):10108-10141. PubMed ID: 38722253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Brief Review of the Role of 2D Mxene Nanosheets toward Solar Cells Efficiency Improvement.
    Alhamada TF; Azmah Hanim MA; Jung DW; Nuraini AA; Hasan WZW
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and simulation investigations on charge transport layers-free in lead-free three absorber layer all-perovskite solar cells.
    Li G; Xu M; Chen Z
    Front Optoelectron; 2024 Jun; 17(1):18. PubMed ID: 38861203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells.
    Agresti A; Pazniak A; Pescetelli S; Di Vito A; Rossi D; Pecchia A; Auf der Maur M; Liedl A; Larciprete R; Kuznetsov DV; Saranin D; Di Carlo A
    Nat Mater; 2019 Nov; 18(11):1228-1234. PubMed ID: 31501556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating a Dual-Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells.
    Long C; Huang K; Chang J; Zuo C; Gao Y; Luo X; Liu B; Xie H; Chen Z; He J; Huang H; Gao Y; Ding L; Yang J
    Small; 2021 Aug; 17(32):e2102368. PubMed ID: 34174144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanium Carbide (Ti
    Niyitanga T; Chaudhary A; Ahmad K; Kim H
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Nickel Oxide Nanoflakes for Carrier Extraction and Transport in Perovskite Solar Cells.
    Chang CY; Wu YW; Yang SH; Abdulhalim I
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells.
    Liu J; Liu N; Li G; Wang Y; Wang Z; Zhang Z; Xu D; Jiang Y; Gao X; Lu X; Feng SP; Zhou G; Liu JM; Gao J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1348-1357. PubMed ID: 36544390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells.
    Wang B; Iocozzia J; Zhang M; Ye M; Yan S; Jin H; Wang S; Zou Z; Lin Z
    Chem Soc Rev; 2019 Sep; 48(18):4854-4891. PubMed ID: 31389932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation.
    Yang Y; Pham ND; Yao D; Fan L; Hoang MT; Tiong VT; Wang Z; Zhu H; Wang H
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28431-28441. PubMed ID: 31311262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Modification in Organic and Perovskite Solar Cells.
    Bi S; Leng X; Li Y; Zheng Z; Zhang X; Zhang Y; Zhou H
    Adv Mater; 2019 Nov; 31(45):e1805708. PubMed ID: 30600552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Passivation Engineering for Highly Efficient Perovskite Solar Cells with a Fill Factor over 83.
    Ji X; Feng K; Ma S; Wang J; Liao Q; Wang Z; Li B; Huang J; Sun H; Wang K; Guo X
    ACS Nano; 2022 Aug; 16(8):11902-11911. PubMed ID: 35866886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing spike-like energy band alignment at the heterointerface in highly efficient perovskite solar cells.
    Wang R; Xie L; Wu T; Ge C; Hua Y
    Chem Sci; 2023 Mar; 14(11):2877-2886. PubMed ID: 36937583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells.
    Xiang W; Liu SF; Tress W
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26440-26453. PubMed ID: 34478217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoS
    Najafi L; Taheri B; Martín-García B; Bellani S; Di Girolamo D; Agresti A; Oropesa-Nuñez R; Pescetelli S; Vesce L; Calabrò E; Prato M; Del Rio Castillo AE; Di Carlo A; Bonaccorso F
    ACS Nano; 2018 Nov; 12(11):10736-10754. PubMed ID: 30240189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.