These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37160701)

  • 21. Facilitating green ammonia manufacture under milder conditions: what do heterogeneous catalyst formulations have to offer?
    Ravi M; Makepeace JW
    Chem Sci; 2022 Jan; 13(4):890-908. PubMed ID: 35211256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.
    Pool JA; Lobkovsky E; Chirik PJ
    Nature; 2004 Feb; 427(6974):527-30. PubMed ID: 14765191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress in the advanced strategies, rational design, and engineering of electrocatalysts for nitrate reduction toward ammonia.
    Shafiq F; Yang L; Zhu W
    Phys Chem Chem Phys; 2024 Apr; 26(15):11208-11216. PubMed ID: 38564180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex.
    Falcone M; Chatelain L; Scopelliti R; Živković I; Mazzanti M
    Nature; 2017 Jul; 547(7663):332-335. PubMed ID: 28726827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Nitrogen Fixation for Green Ammonia: Recent Progress and Challenges.
    Jin H; Kim SS; Venkateshalu S; Lee J; Lee K; Jin K
    Adv Sci (Weinh); 2023 Aug; 10(23):e2300951. PubMed ID: 37289104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dielectric barrier discharge plasma catalysis as an alternative approach for the synthesis of ammonia: a review.
    Hosseini H
    RSC Adv; 2023 Sep; 13(40):28211-28223. PubMed ID: 37753400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering.
    Wang H; Wang L; Wang Q; Ye S; Sun W; Shao Y; Jiang Z; Qiao Q; Zhu Y; Song P; Li D; He L; Zhang X; Yuan J; Wu T; Ozin GA
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12360-12364. PubMed ID: 29923667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical nitrogen reduction: recent progress and prospects.
    Chanda D; Xing R; Xu T; Liu Q; Luo Y; Liu S; Tufa RA; Dolla TH; Montini T; Sun X
    Chem Commun (Camb); 2021 Jul; 57(60):7335-7349. PubMed ID: 34235522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions.
    Qiu Y; Peng X; Lü F; Mi Y; Zhuo L; Ren J; Liu X; Luo J
    Chem Asian J; 2019 Aug; 14(16):2770-2779. PubMed ID: 31290592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C.
    Hattori M; Iijima S; Nakao T; Hosono H; Hara M
    Nat Commun; 2020 Apr; 11(1):2001. PubMed ID: 32332727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water.
    Ashida Y; Arashiba K; Nakajima K; Nishibayashi Y
    Nature; 2019 Apr; 568(7753):536-540. PubMed ID: 31019315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward Sabatier Optimal for Ammonia Synthesis with Paramagnetic Phase of Ferromagnetic Transition Metal Catalysts.
    Xu G; Cai C; Wang T
    J Am Chem Soc; 2022 Dec; 144(50):23089-23095. PubMed ID: 36472493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical Nitrogen Reduction to Ammonia Under Ambient Conditions: Stakes and Challenges.
    Smita Biswas S; Chakraborty S; Saha A; Eswaramoorthy M
    Chem Rec; 2022 Nov; 22(11):e202200139. PubMed ID: 35866503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vacancy-enabled N
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H
    Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency.
    Zhang C; Wang Z; Lei J; Ma L; Yakobson BI; Tour JM
    Small; 2022 Apr; 18(15):e2106327. PubMed ID: 35278039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Study on the Role of Electric Field in Low-Temperature Plasma Catalytic Ammonia Synthesis via Integrated Density Functional Theory and Microkinetic Modeling.
    Shao K; Mesbah A
    JACS Au; 2024 Feb; 4(2):525-544. PubMed ID: 38425907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction.
    Pang Y; Su C; Jia G; Xu L; Shao Z
    Chem Soc Rev; 2021 Nov; 50(22):12744-12787. PubMed ID: 34647937
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.