These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37160768)

  • 1. Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation.
    Tan Y; Stein LY; Sauvageau D
    Bioprocess Biosyst Eng; 2023 Jul; 46(7):969-980. PubMed ID: 37160768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Entner-Doudoroff Pathway Is an Essential Metabolic Route for Methylotuvimicrobium buryatense 5GB1C.
    He L; Groom JD; Lidstrom ME
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33218997
    [No Abstract]   [Full Text] [Related]  

  • 3. Quantifying Methane and Methanol Metabolism of "
    He L; Fu Y; Lidstrom ME
    mSystems; 2019 Dec; 4(6):. PubMed ID: 31822604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1.
    Gilman A; Laurens LM; Puri AW; Chu F; Pienkos PT; Lidstrom ME
    Microb Cell Fact; 2015 Nov; 14():182. PubMed ID: 26572866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C.
    Garg S; Wu H; Clomburg JM; Bennett GN
    Metab Eng; 2018 Jul; 48():175-183. PubMed ID: 29883803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroporation-Based Genetic Manipulation in Type I Methanotrophs.
    Yan X; Chu F; Puri AW; Fu Y; Lidstrom ME
    Appl Environ Microbiol; 2016 Jan; 82(7):2062-2069. PubMed ID: 26801578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cre/
    Cheng M; Pei D; He L; Fei Q; Yan X
    Appl Environ Microbiol; 2023 Jan; 89(1):e0188322. PubMed ID: 36622175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivation techniques to study lanthanide metal interactions in the haloalkaliphilic Type I methanotroph "Methylotuvimicrobium buryatense" 5GB1C.
    Groom JD; Lidstrom ME
    Methods Enzymol; 2021; 650():237-259. PubMed ID: 33867024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1.
    Garg S; Clomburg JM; Gonzalez R
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):379-391. PubMed ID: 29675615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mutagenic Screen Identifies a TonB-Dependent Receptor Required for the Lanthanide Metal Switch in the Type I Methanotroph "Methylotuvimicrobium buryatense" 5GB1C.
    Groom JD; Ford SM; Pesesky MW; Lidstrom ME
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31085692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-limited metabolism in the methanotroph
    Gilman A; Fu Y; Hendershott M; Chu F; Puri AW; Smith AL; Pesesky M; Lieberman R; Beck DAC; Lidstrom ME
    PeerJ; 2017; 5():e3945. PubMed ID: 29062611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense.
    Puri AW; Owen S; Chu F; Chavkin T; Beck DA; Kalyuzhnaya MG; Lidstrom ME
    Appl Environ Microbiol; 2015 Mar; 81(5):1775-81. PubMed ID: 25548049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1.
    Fu Y; Li Y; Lidstrom M
    Metab Eng; 2017 Jul; 42():43-51. PubMed ID: 28552747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core Metabolism Shifts during Growth on Methanol versus Methane in the Methanotroph
    Fu Y; He L; Reeve J; Beck DAC; Lidstrom ME
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967465
    [No Abstract]   [Full Text] [Related]  

  • 15. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.
    Henard CA; Smith H; Dowe N; Kalyuzhnaya MG; Pienkos PT; Guarnieri MT
    Sci Rep; 2016 Feb; 6():21585. PubMed ID: 26902345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the lanthanide-dependent methanol dehydrogenase XoxF from the methanotroph Methylomicrobium buryatense 5GB1C.
    Deng YW; Ro SY; Rosenzweig AC
    J Biol Inorg Chem; 2018 Oct; 23(7):1037-1047. PubMed ID: 30132076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1).
    de la Torre A; Metivier A; Chu F; Laurens LM; Beck DA; Pienkos PT; Lidstrom ME; Kalyuzhnaya MG
    Microb Cell Fact; 2015 Nov; 14():188. PubMed ID: 26607880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst.
    Henard CA; Smith HK; Guarnieri MT
    Metab Eng; 2017 May; 41():152-158. PubMed ID: 28377275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense.
    Chu F; Lidstrom ME
    J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Liu Y; He X; Zhu P; Cheng M; Hong Q; Yan X
    Front Microbiol; 2020; 11():441. PubMed ID: 32296398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.