BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37161076)

  • 1. Two legume fatty acid amide hydrolase isoforms with distinct preferences for microbial- and plant-derived acylamides.
    Arias-Gaguancela O; Herrell E; Aziz M; Chapman KD
    Sci Rep; 2023 May; 13(1):7486. PubMed ID: 37161076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex vivo lipidomics reveal monoacylglycerols as substrates for a fatty acid amide hydrolase in the legume Medicago truncatula.
    Arias-Gaguancela O; Herrell E; Chapman KD
    FEBS Lett; 2024 Jun; ():. PubMed ID: 38831473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant fatty acid (ethanol) amide hydrolases.
    Shrestha R; Kim SC; Dyer JM; Dixon RA; Chapman KD
    Biochim Biophys Acta; 2006 Mar; 1761(3):324-34. PubMed ID: 16624618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana.
    Shrestha R; Dixon RA; Chapman KD
    J Biol Chem; 2003 Sep; 278(37):34990-7. PubMed ID: 12824167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of a plant fatty acid amide hydrolase provides insights into the evolutionary diversity of bioactive acylethanolamides.
    Aziz M; Wang X; Tripathi A; Bankaitis VA; Chapman KD
    J Biol Chem; 2019 May; 294(18):7419-7432. PubMed ID: 30894416
    [No Abstract]   [Full Text] [Related]  

  • 6. Fatty Acid Amide Hydrolases: An Expanded Capacity for Chemical Communication?
    Aziz M; Chapman KD
    Trends Plant Sci; 2020 Mar; 25(3):236-249. PubMed ID: 31919033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets.
    Palermo G; Bauer I; Campomanes P; Cavalli A; Armirotti A; Girotto S; Rothlisberger U; De Vivo M
    PLoS Comput Biol; 2015 Jun; 11(6):e1004231. PubMed ID: 26111155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase.
    Patricelli MP; Cravatt BF
    Biochemistry; 2001 May; 40(20):6107-15. PubMed ID: 11352748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches.
    Filiz E; Vatansever R; Ozyigit II
    Mol Biol Rep; 2016 Mar; 43(3):129-40. PubMed ID: 26852122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An endocannabinoid catabolic enzyme FAAH and its paralogs in an early land plant reveal evolutionary and functional relationship with eukaryotic orthologs.
    Haq I; Kilaru A
    Sci Rep; 2020 Feb; 10(1):3115. PubMed ID: 32080293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid amide hydrolase and 9-lipoxygenase modulate cotton seedling growth by ethanolamide oxylipin levels.
    Arias-Gaguancela O; Aziz M; Chapman KD
    Plant Physiol; 2023 Feb; 191(2):1234-1253. PubMed ID: 36472510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and mutagenic investigations of fatty acid amide hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties.
    Patricelli MP; Lovato MA; Cravatt BF
    Biochemistry; 1999 Aug; 38(31):9804-12. PubMed ID: 10433686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clarifying the catalytic roles of conserved residues in the amidase signature family.
    Patricelli MP; Cravatt BF
    J Biol Chem; 2000 Jun; 275(25):19177-84. PubMed ID: 10764768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in Arabidopsis fatty acid amide hydrolase reveal that catalytic activity influences growth but not sensitivity to abscisic acid or pathogens.
    Kim SC; Kang L; Nagaraj S; Blancaflor EB; Mysore KS; Chapman KD
    J Biol Chem; 2009 Dec; 284(49):34065-74. PubMed ID: 19801664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of synthetic alkamides on Arabidopsis fatty acid amide hydrolase activity and plant development.
    Faure L; Cavazos R; Khan BR; Petros RA; Koulen P; Blancaflor EB; Chapman KD
    Phytochemistry; 2015 Feb; 110():58-71. PubMed ID: 25491532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis.
    Khan BR; Faure L; Chapman KD; Blancaflor EB
    Sci Rep; 2017 Jan; 7():41121. PubMed ID: 28112243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational insights into function and inhibition of fatty acid amide hydrolase.
    Palermo G; Rothlisberger U; Cavalli A; De Vivo M
    Eur J Med Chem; 2015 Feb; 91():15-26. PubMed ID: 25240419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Identification, Characterization, and Expression Analysis of
    Yu Q; Liu J; Jiang J; Liu F; Zhang Z; Yu X; Li M; Alam I; Ge L
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase.
    McKinney MK; Cravatt BF
    J Biol Chem; 2003 Sep; 278(39):37393-9. PubMed ID: 12734197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second fatty acid amide hydrolase with variable distribution among placental mammals.
    Wei BQ; Mikkelsen TS; McKinney MK; Lander ES; Cravatt BF
    J Biol Chem; 2006 Dec; 281(48):36569-78. PubMed ID: 17015445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.