These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37161095)

  • 1. FIREBALL: A tool to fit protein phase diagrams based on mean-field theories for polymer solutions.
    Farag M; Holehouse AS; Zeng X; Pappu RV
    Biophys J; 2023 Jun; 122(12):2396-2403. PubMed ID: 37161095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FIREBALL: A tool to fit protein phase diagrams based on mean-field theories for polymer solutions.
    Farag M; Holehouse AS; Zeng X; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins.
    Zeng X; Holehouse AS; Chilkoti A; Mittag T; Pappu RV
    Biophys J; 2020 Jul; 119(2):402-418. PubMed ID: 32619404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Transitions of Associative Biomacromolecules.
    Pappu RV; Cohen SR; Dar F; Farag M; Kar M
    Chem Rev; 2023 Jul; 123(14):8945-8987. PubMed ID: 36881934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developments in describing equilibrium phase transitions of multivalent associative macromolecules.
    Zeng X; Pappu RV
    Curr Opin Struct Biol; 2023 Apr; 79():102540. PubMed ID: 36804705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates.
    Joshi A; Avni A; Walimbe A; Rai SK; Sarkar S; Mukhopadhyay S
    J Phys Chem Lett; 2024 Aug; 15(30):7724-7734. PubMed ID: 39042834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SpiDec: Computing binodals and interfacial tension of biomolecular condensates from simulations of spinodal decomposition.
    Mazarakos K; Prasad R; Zhou HX
    Front Mol Biosci; 2022; 9():1021939. PubMed ID: 36353733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Protein Phase Diagrams by Centrifugation.
    Milkovic NM; Mittag T
    Methods Mol Biol; 2020; 2141():685-702. PubMed ID: 32696384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Solvent Compatibility in the Phase Behavior of Binary Solutions of Weakly Associating Multivalent Polymers.
    Michels JJ; Brzezinski M; Scheidt T; Lemke EA; Parekh SH
    Biomacromolecules; 2022 Jan; 23(1):349-364. PubMed ID: 34866377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria.
    Cohan MC; Pappu RV
    Trends Biochem Sci; 2020 Aug; 45(8):668-680. PubMed ID: 32456986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers.
    Ruff KM; Roberts S; Chilkoti A; Pappu RV
    J Mol Biol; 2018 Nov; 430(23):4619-4635. PubMed ID: 29949750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crowder titrations enable the quantification of driving forces for macromolecular phase separation.
    Chauhan G; Bremer A; Dar F; Mittag T; Pappu RV
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation?
    Borcherds W; Bremer A; Borgia MB; Mittag T
    Curr Opin Struct Biol; 2021 Apr; 67():41-50. PubMed ID: 33069007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular condensates are characterized by interphase electric potentials.
    Posey AE; Bremer A; Erkamp NA; Pant A; Knowles TPJ; Dai Y; Mittag T; Pappu RV
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Condensate Formation via Controlled Multimerization of Intrinsically Disordered Sequences.
    Garabedian MV; Su Z; Dabdoub J; Tong M; Deiters A; Hammer DA; Good MC
    Biochemistry; 2022 Nov; 61(22):2470-2481. PubMed ID: 35918061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.