These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37161095)

  • 21. Intrinsically disordered proteins and biomolecular condensates as drug targets.
    Biesaga M; Frigolé-Vivas M; Salvatella X
    Curr Opin Chem Biol; 2021 Jun; 62():90-100. PubMed ID: 33812316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
    Dignon GL; Best RB; Mittal J
    Annu Rev Phys Chem; 2020 Apr; 71():53-75. PubMed ID: 32312191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering.
    Peran I; Martin EW; Mittag T
    Methods Mol Biol; 2020; 2141():715-730. PubMed ID: 32696386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LASSI: A lattice model for simulating phase transitions of multivalent proteins.
    Choi JM; Dar F; Pappu RV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins.
    Harmon TS; Holehouse AS; Rosen MK; Pappu RV
    Elife; 2017 Nov; 6():. PubMed ID: 29091028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation.
    Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules.
    Shillcock JC; Lagisquet C; Alexandre J; Vuillon L; Ipsen JH
    Soft Matter; 2022 Sep; 18(35):6674-6693. PubMed ID: 36004748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins.
    Owen I; Shewmaker F
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31694155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge-Patterned Disordered Peptides Tune Intracellular Phase Separation in Bacteria.
    Liao J; Yeong V; Obermeyer AC
    ACS Synth Biol; 2024 Feb; 13(2):598-612. PubMed ID: 38308651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vitro Transition Temperature Measurement of Phase-Separating Proteins by Microscopy.
    Holland J; Crabtree MD; Nott TJ
    Methods Mol Biol; 2020; 2141():703-714. PubMed ID: 32696385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells.
    Ramšak M; Ramirez DA; Hough LE; Shirts MR; Vidmar S; Eleršič Filipič K; Anderluh G; Jerala R
    Nat Commun; 2023 Dec; 14(1):7973. PubMed ID: 38042897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
    Choi JM; Holehouse AS; Pappu RV
    Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand effects on phase separation of multivalent macromolecules.
    Ruff KM; Dar F; Pappu RV
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small-angle X-ray scattering experiments of monodisperse intrinsically disordered protein samples close to the solubility limit.
    Martin EW; Hopkins JB; Mittag T
    Methods Enzymol; 2021; 646():185-222. PubMed ID: 33453925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of functional intrinsically disordered proteins.
    Garg A; González-Foutel NS; Gielnik MB; Kjaergaard M
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38431892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fundamental Challenges and Outlook in Simulating Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
    Bari KJ; Prakashchand DD
    J Phys Chem Lett; 2021 Feb; 12(6):1644-1656. PubMed ID: 33555894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.