These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37161157)
41. Fermentative hydrogen production from low-value substrates. Hassan AHS; Mietzel T; Brunstermann R; Schmuck S; Schoth J; Küppers M; Widmann R World J Microbiol Biotechnol; 2018 Nov; 34(12):176. PubMed ID: 30446833 [TBL] [Abstract][Full Text] [Related]
42. Enhanced biohydrogen yield and light conversion efficiency during photo-fermentation using immobilized photo-catalytic nano-particles. Zhang Z; Fan X; Li D; Li Y; Zhang Q; Duan Z; Yang G; Zhu S; Zhang H; Yue J Bioresour Technol; 2023 Jun; 377():128931. PubMed ID: 36940883 [TBL] [Abstract][Full Text] [Related]
43. Model-Based Nutrient Feeding Strategies for the Increased Production of Polyhydroxybutyrate (PHB) by Alcaligenes latus. Gahlawat G; Srivastava AK Appl Biochem Biotechnol; 2017 Oct; 183(2):530-542. PubMed ID: 28455808 [TBL] [Abstract][Full Text] [Related]
44. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Liu BF; Ren NQ; Xing DF; Ding J; Zheng GX; Guo WQ; Xu JF; Xie GJ Bioresour Technol; 2009 May; 100(10):2719-23. PubMed ID: 19200719 [TBL] [Abstract][Full Text] [Related]
45. Comparison of three ionic liquids pretreatment of Arundo donax L. For enhanced photo-fermentative hydrogen production. Chen Z; Jiang D; Zhang T; Lei T; Zhang H; Yang J; Shui X; Li F; Zhang Y; Zhang Q Bioresour Technol; 2022 Jan; 343():126088. PubMed ID: 34624469 [TBL] [Abstract][Full Text] [Related]
46. Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Gahlawat G; Srivastava AK Bioresour Technol; 2013 Jun; 137():98-105. PubMed ID: 23587813 [TBL] [Abstract][Full Text] [Related]
47. Effect of zinc ion on photo-fermentative hydrogen production performance, kinetics and electronic distribution in biohydrogen production by HAU-M1. Zhang H; Li Y; Chen L; Zhang Q Bioresour Technol; 2021 Mar; 324():124680. PubMed ID: 33445013 [TBL] [Abstract][Full Text] [Related]
48. Two-stage fermentation optimization for poly-3-hydroxybutyrate production from methanol by a new Methylobacterium isolate from oil fields. Wang J; Tan H; Li K; Yin H J Appl Microbiol; 2020 Jan; 128(1):171-181. PubMed ID: 31559676 [TBL] [Abstract][Full Text] [Related]
49. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production. Xie GJ; Liu BF; Ding J; Wang Q; Ma C; Zhou X; Ren NQ Environ Sci Pollut Res Int; 2016 Dec; 23(24):25312-25322. PubMed ID: 27696162 [TBL] [Abstract][Full Text] [Related]
50. A strategy for successive feedstock reuse to maximize photo-fermentative hydrogen production of Arundo donax L. Jiang D; Yue T; Zhang Z; He C; Jing Y; Lu C; Zhang H; Chen Z; Zhang Q Bioresour Technol; 2021 Jun; 329():124878. PubMed ID: 33652190 [TBL] [Abstract][Full Text] [Related]
51. Recycling of shrub landscaping waste: Exploration of bio-hydrogen production potential and optimization of photo-fermentation bio-hydrogen production process. Yue T; Jiang D; Zhang Z; Zhang Y; Li Y; Zhang T; Zhang Q Bioresour Technol; 2021 Jul; 331():125048. PubMed ID: 33798861 [TBL] [Abstract][Full Text] [Related]
52. Enhanced ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by employing polyhydroxybutyrate as an intracellular carbon reservoir and optimizing carbon addition. Wang P; Yin Y; Wang X; Wen J Microb Cell Fact; 2021 Mar; 20(1):70. PubMed ID: 33731113 [TBL] [Abstract][Full Text] [Related]
53. Defining Nutrient Combinations for Optimal Growth and Polyhydroxybutyrate Production by Zaldívar Carrillo JA; Stein LY; Sauvageau D Front Microbiol; 2018; 9():1513. PubMed ID: 30072960 [TBL] [Abstract][Full Text] [Related]
54. Finding of novel polyhydroxybutyrate producer Loktanella sp. SM43 capable of balanced utilization of glucose and xylose from lignocellulosic biomass. Lee SM; Cho DH; Jung HJ; Kim B; Kim SH; Bhatia SK; Gurav R; Jeon JM; Yoon JJ; Kim W; Choi KY; Yang YH Int J Biol Macromol; 2022 May; 208():809-818. PubMed ID: 35364206 [TBL] [Abstract][Full Text] [Related]
55. Dephenolization of stored olive-mill wastewater, using four different adsorbing matrices to attain a low-cost feedstock for hydrogen photo-production. Padovani G; Pintucci C; Carlozzi P Bioresour Technol; 2013 Jun; 138():172-9. PubMed ID: 23612177 [TBL] [Abstract][Full Text] [Related]
56. Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: A review. Monroy I; Buitrón G J Biotechnol; 2020 Jun; 317():39-47. PubMed ID: 32380087 [TBL] [Abstract][Full Text] [Related]
57. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Serafim LS; Lemos PC; Oliveira R; Reis MA Biotechnol Bioeng; 2004 Jul; 87(2):145-60. PubMed ID: 15236243 [TBL] [Abstract][Full Text] [Related]
58. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
59. [Effects of substrate species on fermentative hydrogen production]. Tang GL; Tang QQ; Huang J; Liu GQ; Sun ZJ Huan Jing Ke Xue; 2008 Aug; 29(8):2345-9. PubMed ID: 18839598 [TBL] [Abstract][Full Text] [Related]
60. Enhanced polyhydroxybutyrate production from acid whey through determination of process and metabolic limiting factors. Hou L; Jia L; Morrison HM; L-W Majumder E; Kumar D Bioresour Technol; 2021 Dec; 342():125973. PubMed ID: 34563817 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]