BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37161937)

  • 1. Dye-induced photoluminescence quenching of quantum dots: role of excited state lifetime and confinement of charge carriers.
    Al-Maskari S; Issac A; Varanasi SR; Hildner R; Sofin RGS; Ibrahim AR; Abou-Zied OK
    Phys Chem Chem Phys; 2023 May; 25(20):14126-14137. PubMed ID: 37161937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.
    Devatha G; Roy S; Rao A; Mallick A; Basu S; Pillai PP
    Chem Sci; 2017 May; 8(5):3879-3884. PubMed ID: 28626557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatically Driven Resonance Energy Transfer in an All-Quantum Dot Based Donor-Acceptor System.
    Roy P; Devatha G; Roy S; Rao A; Pillai PP
    J Phys Chem Lett; 2020 Jul; 11(13):5354-5360. PubMed ID: 32539403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots.
    Park N; Eagle FW; DeLarme AJ; Monahan M; LoCurto T; Beck R; Li X; Cossairt BM
    J Chem Phys; 2021 Aug; 155(8):084701. PubMed ID: 34470352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation principles and ligand dynamics of nanoassemblies of CdSe quantum dots and functionalised dye molecules.
    Blaudeck T; Zenkevich EI; Abdel-Mottaleb M; Szwaykowska K; Kowerko D; Cichos F; von Borczyskowski C
    Chemphyschem; 2012 Mar; 13(4):959-72. PubMed ID: 22213596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of non-FRET photoluminescence quenching in nanoassemblies from semiconductor quantum dots and dye molecules.
    Stupak AP; Blaudeck T; Zenkevich EI; Krause S; von Borczyskowski C
    Phys Chem Chem Phys; 2018 Jul; 20(27):18579-18600. PubMed ID: 29953143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue-emitting InP quantum dots participate in an efficient resonance energy transfer process in water.
    Roy P; Virmani M; Pillai PP
    Chem Sci; 2023 May; 14(19):5167-5176. PubMed ID: 37206393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes.
    Scott AM; Algar WR; Stewart MH; Trammell SA; Blanco-Canosa JB; Dawson PE; Deschamps JR; Goswami R; Oh E; Huston AL; Medintz IL
    J Phys Chem C Nanomater Interfaces; 2014 May; 118(17):9239-9250. PubMed ID: 24817922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface passivation extends single and biexciton lifetimes of InP quantum dots.
    Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T
    Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.
    Ratnesh RK; Mehata MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible Electrochemical Control over Photoexcited Luminescence of Core/Shell CdSe/ZnS Quantum Dot Film.
    Li B; Lu M; Liu W; Zhu X; He X; Yang Y; Yang Q
    Nanoscale Res Lett; 2017 Dec; 12(1):626. PubMed ID: 29247304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavefunction engineering for efficient photoinduced-electron transfer in CuInS
    Sun J; An L; Xue G; Li X
    Nanotechnology; 2020 May; 31(21):215408. PubMed ID: 32040949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescence properties and exciton dynamics of core-multi-shell semiconductor quantum dots leading to QLEDs.
    Mehata MS; Ratnesh RK
    Dalton Trans; 2019 Jun; 48(22):7619-7631. PubMed ID: 31070635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectual Interface and Defect Engineering for Auger Recombination Suppression in Bright InP/ZnSeS/ZnS Quantum Dots.
    Lee Y; Jo DY; Kim T; Jo JH; Park J; Yang H; Kim D
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12479-12487. PubMed ID: 35238532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control.
    Park J; Won YH; Han Y; Kim HM; Jang E; Kim D
    Small; 2022 Feb; 18(8):e2105492. PubMed ID: 34889031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitonic Energy Transfer within InP/ZnS Quantum Dot Langmuir-Blodgett Assemblies.
    Bahmani Jalali H; Melikov R; Sadeghi S; Nizamoglu S
    J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(22):11616-11622. PubMed ID: 30057655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.