These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3716198)

  • 21. Effect of ammonia on Na+ transport across isolated rumen epithelium of sheep is diet dependent.
    Abdoun K; Wolf K; Arndt G; Martens H
    Br J Nutr; 2003 Oct; 90(4):751-8. PubMed ID: 13129443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis.
    Meissner S; Hagen F; Deiner C; Günzel D; Greco G; Shen Z; Aschenbach JR
    J Dairy Sci; 2017 Aug; 100(8):6662-6675. PubMed ID: 28551186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single mild episode of subacute ruminal acidosis does not affect ruminal barrier function in the short term.
    Penner GB; Oba M; Gäbel G; Aschenbach JR
    J Dairy Sci; 2010 Oct; 93(10):4838-45. PubMed ID: 20855017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The barrier to diffusion across ruminal epithelium: a study by electron microscopy using horseradish peroxidase, lanthanum, and ferritin.
    Henrikson RC; Stacy BD
    J Ultrastruct Res; 1971 Jan; 34(1):72-82. PubMed ID: 5539912
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of the Bacillus thuringiensis toxin Cry1Ab on membrane currents of isolated cells of the ruminal epithelium.
    Stumpff F; Bondzio A; Einspanier R; Martens H
    J Membr Biol; 2007 Oct; 219(1-3):37-47. PubMed ID: 17676405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows.
    Storm AC; Kristensen NB; Hanigan MD
    J Dairy Sci; 2012 Jun; 95(6):2919-34. PubMed ID: 22612930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mg(2+) transport in sheep rumen epithelium: evidence for an electrodiffusive uptake mechanism.
    Schweigel M; Lang I; Martens H
    Am J Physiol; 1999 Nov; 277(5):G976-82. PubMed ID: 10564103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anion-dependent Mg2+ influx and a role for a vacuolar H+-ATPase in sheep ruminal epithelial cells.
    Schweigel M; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2003 Jul; 285(1):G45-53. PubMed ID: 12606303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Portal recovery of short-chain fatty acids infused into the temporarily-isolated and washed reticulo-rumen of sheep.
    Kristensen NB; Gäbel G; Pierzynowski SG; Danfaer A
    Br J Nutr; 2000 Oct; 84(4):477-82. PubMed ID: 11103218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of butyrate infusion into the rumen on butyrate flow to the duodenum, selected gene expression in the duodenum epithelium, and nutrient digestion in sheep.
    Górka P; Śliwiński B; Flaga J; Wieczorek J; Godlewski MM; Wierzchoś E; Zabielski R; Kowalski ZM
    J Anim Sci; 2017 May; 95(5):2144-2155. PubMed ID: 28726987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep.
    Goodlad RA
    Q J Exp Physiol; 1981 Oct; 66(4):487-99. PubMed ID: 6914682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake of zinc from zinc sulfate and zinc proteinate by ovine ruminal and omasal epithelia.
    Wright CL; Spears JW; Webb KE
    J Anim Sci; 2008 Jun; 86(6):1357-63. PubMed ID: 18310488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional and molecular biological evidence of SGLT-1 in the ruminal epithelium of sheep.
    Aschenbach JR; Wehning H; Kurze M; Schaberg E; Nieper H; Burckhardt G; Gäbel G
    Am J Physiol Gastrointest Liver Physiol; 2000 Jul; 279(1):G20-7. PubMed ID: 10898743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ontogenesis of the rumen: a comparative analysis of the Merino sheep and Iberian red deer.
    Franco A; Masot J; Redondo E
    Anim Sci J; 2011 Feb; 82(1):107-16. PubMed ID: 21269368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and functional evidence for a Na(+)-HCO3(-)-cotransporter in sheep ruminal epithelium.
    Huhn K; Müller F; Honscha KU; Pfannkuche H; Gäbel G
    J Comp Physiol B; 2003 Jun; 173(4):277-84. PubMed ID: 12820006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorption of 2-hydroxy-4-(methylthio)butanoic acid by isolated sheep ruminal and omasal epithelia.
    McCollum MQ; Vázquez-Añón M; Dibner JJ; Webb KE
    J Anim Sci; 2000 Apr; 78(4):1078-83. PubMed ID: 10784201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sheep rumen and omasum primary cultures and source epithelia: barrier function aligns with expression of tight junction proteins.
    Stumpff F; Georgi MI; Mundhenk L; Rabbani I; Fromm M; Martens H; Günzel D
    J Exp Biol; 2011 Sep; 214(Pt 17):2871-82. PubMed ID: 21832130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Basolateral Mg2+/Na+ exchange regulates apical nonselective cation channel in sheep rumen epithelium via cytosolic Mg2+.
    Leonhard-Marek S; Stumpff F; Brinkmann I; Breves G; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2005 Apr; 288(4):G630-45. PubMed ID: 15550561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short communication: Interrelationship between butyrate and glucose supply on butyrate and glucose oxidation by ruminal epithelial preparations.
    Wiese BI; Górka P; Mutsvangwa T; Okine E; Penner GB
    J Dairy Sci; 2013 Sep; 96(9):5914-8. PubMed ID: 23810600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy substrates for the rumen epithelium.
    Rémond D; Ortigues I; Jouany JP
    Proc Nutr Soc; 1995 Mar; 54(1):95-105. PubMed ID: 7568268
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.