These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 3716206)
1. Processing of optical information by the visual system of the fly. Reichardt W Vision Res; 1986; 26(1):113-26. PubMed ID: 3716206 [TBL] [Abstract][Full Text] [Related]
2. Line width determination using a biomimetic fly eye vision system. Benson JB; Wright CH; Barrett SF Biomed Sci Instrum; 2007; 43():224-9. PubMed ID: 17487085 [TBL] [Abstract][Full Text] [Related]
3. The fly can discriminate movement at signal/noise ratios as low as one-eighth. Srinivasan MV; Bernard GD Vision Res; 1977; 17(5):609-16. PubMed ID: 878343 [No Abstract] [Full Text] [Related]
4. Detection of object motion by a fly neuron during simulated flight. Kimmerle B; Egelhaaf M J Comp Physiol A; 2000 Jan; 186(1):21-31. PubMed ID: 10659039 [TBL] [Abstract][Full Text] [Related]
5. Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Poggio T; Reichardt W Q Rev Biophys; 1976 Aug; 9(3):377-438. PubMed ID: 790442 [No Abstract] [Full Text] [Related]
6. Edge encoding mechanisms in Musca domestica. Barrett SF; Wilcox M; Wright C Biomed Sci Instrum; 2004; 40():401-6. PubMed ID: 15133991 [TBL] [Abstract][Full Text] [Related]
7. Computer simulations of figure-ground discrimination in the visual system of the fly. Guo AK; Liu Z; Feng CH Sci China B; 1989 Jan; 32(1):78-87. PubMed ID: 2742750 [TBL] [Abstract][Full Text] [Related]
8. Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Reichardt W; Poggio T Q Rev Biophys; 1976 Aug; 9(3):311-75, 428-38. PubMed ID: 790441 [No Abstract] [Full Text] [Related]
9. The angular orientation of the movement detectors acting on the flight lift response in flies. Wehrhahn C Biol Cybern; 1978 Dec; 31(3):169-73. PubMed ID: 728497 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric processing of visual motion for simultaneous object and background responses. Fenk LM; Poehlmann A; Straw AD Curr Biol; 2014 Dec; 24(24):2913-9. PubMed ID: 25454785 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic motion detection based on overlapping Gaussian profiles. Anderson TM; Wright CH; Barrett SF; Benson JB Biomed Sci Instrum; 2007; 43():372-7. PubMed ID: 17487110 [TBL] [Abstract][Full Text] [Related]
12. An elaborated model of fly small-target tracking. Higgins CM; Pant V Biol Cybern; 2004 Dec; 91(6):417-28. PubMed ID: 15597180 [TBL] [Abstract][Full Text] [Related]
13. Early processing of colour and motion in a mosaic visual system. Franceschini N Neurosci Res Suppl; 1985; 2():S17-49. PubMed ID: 3866152 [No Abstract] [Full Text] [Related]
14. Motion detection in insect orientation and navigation. Srinivasan MV; Poteser M; Kral K Vision Res; 1999 Aug; 39(16):2749-66. PubMed ID: 10492835 [TBL] [Abstract][Full Text] [Related]
15. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish. Stojcev M; Radtke N; D'Amaro D; Dyer AG; Neumeyer C Vis Neurosci; 2011 Jul; 28(4):361-70. PubMed ID: 21518470 [TBL] [Abstract][Full Text] [Related]
16. Temporal summation of visual motion. Simpson WA Vision Res; 1994 Oct; 34(19):2547-59. PubMed ID: 7975294 [TBL] [Abstract][Full Text] [Related]
17. Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics. Hausen K; Wehrhahn C J Neurosci; 1989 Nov; 9(11):3828-36. PubMed ID: 2585057 [TBL] [Abstract][Full Text] [Related]