These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 37162131)
1. Light Triggered Pore Size Tuning in Photoswitching Covalent Triazine Frameworks for Low Energy CO Huang Q; Zhan Z; Sun R; Mu J; Tan B; Wu C Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202305500. PubMed ID: 37162131 [TBL] [Abstract][Full Text] [Related]
2. A Robust Metal-Organic Framework for Dynamic Light-Induced Swing Adsorption of Carbon Dioxide. Li H; Martinez MR; Perry Z; Zhou HC; Falcaro P; Doblin C; Lim S; Hill AJ; Halstead B; Hill MR Chemistry; 2016 Aug; 22(32):11176-9. PubMed ID: 27273621 [TBL] [Abstract][Full Text] [Related]
3. A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO Bi J; Xu B; Sun L; Huang H; Fang S; Li L; Wu L Chempluschem; 2019 Aug; 84(8):1149-1154. PubMed ID: 31943960 [TBL] [Abstract][Full Text] [Related]
4. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595 [TBL] [Abstract][Full Text] [Related]
5. Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture. Wang K; Huang H; Liu D; Wang C; Li J; Zhong C Environ Sci Technol; 2016 May; 50(9):4869-76. PubMed ID: 27081869 [TBL] [Abstract][Full Text] [Related]
6. Strategies for Enhancing the Photocatalytic and Electrocatalytic Efficiency of Covalent Triazine Frameworks for CO Liu G; Liu S; Lai C; Qin L; Zhang M; Li Y; Xu M; Ma D; Xu F; Liu S; Dai M; Chen Q Small; 2024 May; 20(22):e2307853. PubMed ID: 38143294 [TBL] [Abstract][Full Text] [Related]
7. Straightforward preparation of fluorinated covalent triazine frameworks with significantly enhanced carbon dioxide and hydrogen adsorption capacities. Wang G; Onyshchenko Y; De Geyter N; Morent R; Leus K; Van Der Voort P Dalton Trans; 2019 Dec; 48(47):17612-17619. PubMed ID: 31755487 [TBL] [Abstract][Full Text] [Related]
8. Playing with covalent triazine framework tiles for improved CO Tuci G; Iemhoff A; Ba H; Luconi L; Rossin A; Papaefthimiou V; Palkovits R; Artz J; Pham-Huu C; Giambastiani G Beilstein J Nanotechnol; 2019; 10():1217-1227. PubMed ID: 31293859 [TBL] [Abstract][Full Text] [Related]
9. Photoswitching CO₂ capture and release in a photochromic diarylethene metal-organic framework. Luo F; Fan CB; Luo MB; Wu XL; Zhu Y; Pu SZ; Xu WY; Guo GC Angew Chem Int Ed Engl; 2014 Aug; 53(35):9298-301. PubMed ID: 24806829 [TBL] [Abstract][Full Text] [Related]
10. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596 [TBL] [Abstract][Full Text] [Related]
11. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO Xu G; Zhu Y; Xie W; Zhang S; Yao C; Xu Y Chem Asian J; 2019 Oct; 14(19):3259-3263. PubMed ID: 31441220 [TBL] [Abstract][Full Text] [Related]
12. Covalent Triazine Frameworks Obtained from Nitrile Monomers for Sustainable CO Luo R; Xu W; Chen M; Liu X; Fang Y; Ji H ChemSusChem; 2020 Dec; 13(24):6509-6522. PubMed ID: 33118279 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Sun R; Wang X; Wang X; Tan B Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202117668. PubMed ID: 35038216 [TBL] [Abstract][Full Text] [Related]
14. Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO Wang G; Leus K; Zhao S; Van Der Voort P ACS Appl Mater Interfaces; 2018 Jan; 10(1):1244-1249. PubMed ID: 29235840 [TBL] [Abstract][Full Text] [Related]
15. Photoresponsive Covalent Organic Frameworks: Visible-Light Controlled Conversion of Porous Structures and Its Impacts. Feng Y; Wang G; Liu R; Ye X; Tao S; Addicoat MA; Li Z; Jiang Q; Jiang D Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202400009. PubMed ID: 38415815 [TBL] [Abstract][Full Text] [Related]
16. Dynamic photo-switching in light-responsive JUC-62 for CO Prasetya N; Ladewig BP Sci Rep; 2017 Oct; 7(1):13355. PubMed ID: 29042605 [TBL] [Abstract][Full Text] [Related]
17. Low-Energy CO Li H; Hill MR Acc Chem Res; 2017 Apr; 50(4):778-786. PubMed ID: 28272872 [TBL] [Abstract][Full Text] [Related]
18. Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage. Lee YJ; Talapaneni SN; Coskun A ACS Appl Mater Interfaces; 2017 Sep; 9(36):30679-30685. PubMed ID: 28782930 [TBL] [Abstract][Full Text] [Related]
19. Direct Synthesis of Microporous Bicarbazole-Based Covalent Triazine Frameworks for High-Performance Energy Storage and Carbon Dioxide Uptake. Mohamed MG; El-Mahdy AFM; Ahmed MMM; Kuo SW Chempluschem; 2019 Nov; 84(11):1767-1774. PubMed ID: 31943884 [TBL] [Abstract][Full Text] [Related]
20. Devising Chemically Robust and Cationic Ni(II)-MOF with Nitrogen-Rich Micropores for Moisture-Tolerant CO Goswami R; Seal N; Dash SR; Tyagi A; Neogi S ACS Appl Mater Interfaces; 2019 Oct; 11(43):40134-40150. PubMed ID: 31584789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]