These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 37162152)

  • 1. Stress-related biomolecular condensates in plants.
    Solis-Miranda J; Chodasiewicz M; Skirycz A; Fernie AR; Moschou PN; Bozhkov PV; Gutierrez-Beltran E
    Plant Cell; 2023 Sep; 35(9):3187-3204. PubMed ID: 37162152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses.
    Li Q; Liu Y; Zhang X
    Plant Cell; 2024 Jan; 36(2):227-245. PubMed ID: 37772963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of biomolecular condensates to the autophagy pathway.
    Ma X; Li P; Ge L
    Trends Cell Biol; 2023 Jun; 33(6):505-516. PubMed ID: 36150962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cajal bodies: Evolutionarily conserved nuclear biomolecular condensates with properties unique to plants.
    Taliansky ME; Love AJ; Kołowerzo-Lubnau A; Smoliński DJ
    Plant Cell; 2023 Sep; 35(9):3214-3235. PubMed ID: 37202374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.
    Guo G; Wang X; Zhang Y; Li T
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development.
    Field S; Jang GJ; Dean C; Strader LC; Rhee SY
    Plant Cell; 2023 Sep; 35(9):3173-3186. PubMed ID: 36879427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape of biomolecular condensates in heat stress responses.
    Londoño Vélez V; Alquraish F; Tarbiyyah I; Rafique F; Mao D; Chodasiewicz M
    Front Plant Sci; 2022; 13():1032045. PubMed ID: 36311142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing.
    Alberti S; Hyman AA
    Nat Rev Mol Cell Biol; 2021 Mar; 22(3):196-213. PubMed ID: 33510441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular Condensates: Structure, Functions, Methods of Research.
    Gorsheneva NA; Sopova JV; Azarov VV; Grizel AV; Rubel AA
    Biochemistry (Mosc); 2024 Jan; 89(Suppl 1):S205-S223. PubMed ID: 38621751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The emerging role of biomolecular condensates in plant immunity.
    Wang W; Gu Y
    Plant Cell; 2022 Apr; 34(5):1568-1572. PubMed ID: 34599333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological Phase Separation and Biomolecular Condensates in Plants.
    Emenecker RJ; Holehouse AS; Strader LC
    Annu Rev Plant Biol; 2021 Jun; 72():17-46. PubMed ID: 33684296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splicing regulation through biomolecular condensates and membraneless organelles.
    Giudice J; Jiang H
    Nat Rev Mol Cell Biol; 2024 Sep; 25(9):683-700. PubMed ID: 38773325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA and condensates: Disease implications and therapeutic opportunities.
    Han TW; Portz B; Young RA; Boija A; Klein IA
    Cell Chem Biol; 2024 Sep; 31(9):1593-1609. PubMed ID: 39303698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets.
    Niu X; Zhang L; Wu Y; Zong Z; Wang B; Liu J; Zhang L; Zhou F
    MedComm (2020); 2023 Apr; 4(2):e223. PubMed ID: 36875159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The implications of physiological biomolecular condensates in amyotrophic lateral sclerosis.
    Fakim H; Vande Velde C
    Semin Cell Dev Biol; 2024 Mar; 156():176-189. PubMed ID: 37268555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.