These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 3716229)
1. The longitudinal chromatic aberration of the human eye, and its correction. Howarth PA; Bradley A Vision Res; 1986; 26(2):361-6. PubMed ID: 3716229 [TBL] [Abstract][Full Text] [Related]
2. Chromatic aberration and optical power of a diffractive bifocal contact lens. Atchison DA; Ye M; Bradley A; Collins MJ; Zhang X; Rahman HA; Thibos LN Optom Vis Sci; 1992 Oct; 69(10):797-804. PubMed ID: 1437002 [TBL] [Abstract][Full Text] [Related]
4. Does the chromatic aberration of the eye vary with age? Howarth PA; Zhang XX; Bradley A; Still DL; Thibos LN J Opt Soc Am A; 1988 Dec; 5(12):2087-92. PubMed ID: 3230477 [TBL] [Abstract][Full Text] [Related]
5. In vivo longitudinal chromatic aberration of pseudophakic eyes. Siedlecki D; Jóźwik A; Zając M; Hill-Bator A; Turno-Kręcicka A Optom Vis Sci; 2014 Feb; 91(2):240-6. PubMed ID: 24270638 [TBL] [Abstract][Full Text] [Related]
6. Use of liquid-crystal adaptive-optics to alter the refractive state of the eye. Thibos LN; Bradley A Optom Vis Sci; 1997 Jul; 74(7):581-7. PubMed ID: 9293528 [TBL] [Abstract][Full Text] [Related]
7. Achromatizing the human eye. Bradley A; Zhang XX; Thibos LN Optom Vis Sci; 1991 Aug; 68(8):608-16. PubMed ID: 1923337 [TBL] [Abstract][Full Text] [Related]
8. Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye. Atchison DA; Smith G; Waterworth MD Optom Vis Sci; 1993 Sep; 70(9):716-22. PubMed ID: 8233365 [TBL] [Abstract][Full Text] [Related]
9. The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm. Gilmartin B; Hogan RE Vision Res; 1985; 25(11):1747-53. PubMed ID: 3832600 [TBL] [Abstract][Full Text] [Related]
10. [Eye and eyeglasses]. Reiner J Buch Augenarzt; 1972; 59():1-132. PubMed ID: 5063498 [No Abstract] [Full Text] [Related]
11. Longitudinal chromatic aberration of the human infant eye. Wang J; Candy TR; Teel DF; Jacobs RJ J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2263-70. PubMed ID: 18758552 [TBL] [Abstract][Full Text] [Related]
12. Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models. Song H; Yuan X; Tang X BMC Ophthalmol; 2016 Jan; 16():9. PubMed ID: 26754111 [TBL] [Abstract][Full Text] [Related]
13. The chromatic aberration of the eye between wavelengths 200 nm and 2000 nm: some theoretical considerations. Tucker J Br J Physiol Opt; 1974; 29(3):118-25. PubMed ID: 4470006 [TBL] [Abstract][Full Text] [Related]
14. Changes in spherical aberration after lens refilling with a silicone oil. Wong KH; Koopmans SA; Terwee T; Kooijman AC Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171 [TBL] [Abstract][Full Text] [Related]
15. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency. Millán MS; Vega F; Ríos-López I Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2021-8. PubMed ID: 27100158 [TBL] [Abstract][Full Text] [Related]
17. The effect of chromatic dispersion on pseudophakic optical performance. Zhao H; Mainster MA Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697 [TBL] [Abstract][Full Text] [Related]
18. The Charles F. Prentice Award Lecture 2005: optics of the human eye: progress and problems. Charman WN Optom Vis Sci; 2006 Jun; 83(6):335-45. PubMed ID: 16772891 [TBL] [Abstract][Full Text] [Related]
19. The effect of spherical aberration of contact lens to the wearer. Campbell CE Am J Optom Physiol Opt; 1981 Mar; 58(3):212-7. PubMed ID: 7223853 [TBL] [Abstract][Full Text] [Related]
20. Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye. Zhang XX; Thibos LN; Bradley A Optom Vis Sci; 1991 Jun; 68(6):456-8. PubMed ID: 1891197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]