These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 37162442)
1. Machine learning algorithms identify hypokalaemia risk in people with hypertension in the United States National Health and Nutrition Examination Survey 1999-2018. Lin Z; Cheng YT; Cheung BMY Ann Med; 2023 Dec; 55(1):2209336. PubMed ID: 37162442 [TBL] [Abstract][Full Text] [Related]
2. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. Dinh A; Miertschin S; Young A; Mohanty SD BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707 [TBL] [Abstract][Full Text] [Related]
3. Development and Validation of an Insulin Resistance Model for a Population with Chronic Kidney Disease Using a Machine Learning Approach. Lee CL; Liu WJ; Tsai SF Nutrients; 2022 Jul; 14(14):. PubMed ID: 35889789 [TBL] [Abstract][Full Text] [Related]
4. A systematic comparison of machine learning algorithms to develop and validate prediction model to predict heart failure risk in middle-aged and elderly patients with periodontitis (NHANES 2009 to 2014). Wang Y; Xiao Y; Zhang Y Medicine (Baltimore); 2023 Aug; 102(34):e34878. PubMed ID: 37653785 [TBL] [Abstract][Full Text] [Related]
5. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
6. Patient-Level Prediction of Cardio-Cerebrovascular Events in Hypertension Using Nationwide Claims Data. Park J; Kim JW; Ryu B; Heo E; Jung SY; Yoo S J Med Internet Res; 2019 Feb; 21(2):e11757. PubMed ID: 30767907 [TBL] [Abstract][Full Text] [Related]
7. Predicting the risk of hypertension using machine learning algorithms: A cross sectional study in Ethiopia. Islam MM; Alam MJ; Maniruzzaman M; Ahmed NAMF; Ali MS; Rahman MJ; Roy DC PLoS One; 2023; 18(8):e0289613. PubMed ID: 37616271 [TBL] [Abstract][Full Text] [Related]
8. Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study. Yu JR; Chen CH; Huang TW; Lu JJ; Chung CR; Lin TW; Wu MH; Tseng YJ; Wang HY J Med Internet Res; 2022 Jan; 24(1):e28036. PubMed ID: 35076405 [TBL] [Abstract][Full Text] [Related]
9. Building a predictive model for hypertension related to environmental chemicals using machine learning. Liu S; Lu L; Wang F; Han B; Ou L; Gao X; Luo Y; Huo W; Zeng Q Environ Sci Pollut Res Int; 2024 Jan; 31(3):4595-4605. PubMed ID: 38105323 [TBL] [Abstract][Full Text] [Related]
10. Machine learning algorithms identify demographics, dietary features, and blood biomarkers associated with stroke records. Liu J; Chou EL; Lau KK; Woo PYM; Li J; Chan KHK J Neurol Sci; 2022 Sep; 440():120335. PubMed ID: 35863116 [TBL] [Abstract][Full Text] [Related]
11. Prediction of the acceptance of telemedicine among rheumatic patients: a machine learning-powered secondary analysis of German survey data. Muehlensiepen F; Petit P; Knitza J; Welcker M; Vuillerme N Rheumatol Int; 2024 Mar; 44(3):523-534. PubMed ID: 38206379 [TBL] [Abstract][Full Text] [Related]
12. Prediction model of obstructive sleep apnea-related hypertension: Machine learning-based development and interpretation study. Shi Y; Ma L; Chen X; Li W; Feng Y; Zhang Y; Cao Z; Yuan Y; Xie Y; Liu H; Yin L; Zhao C; Wu S; Ren X Front Cardiovasc Med; 2022; 9():1042996. PubMed ID: 36545020 [TBL] [Abstract][Full Text] [Related]
13. Machine learning model for cardiovascular disease prediction in patients with chronic kidney disease. Zhu H; Qiao S; Zhao D; Wang K; Wang B; Niu Y; Shang S; Dong Z; Zhang W; Zheng Y; Chen X Front Endocrinol (Lausanne); 2024; 15():1390729. PubMed ID: 38863928 [TBL] [Abstract][Full Text] [Related]
14. Identifying metabolic dysfunction-associated steatotic liver disease in patients with hypertension and pre-hypertension: An interpretable machine learning approach. Chen C; Zhang W; Yan G; Tang C Digit Health; 2024; 10():20552076241233135. PubMed ID: 38389508 [TBL] [Abstract][Full Text] [Related]
15. Machine learning-based models to predict the conversion of normal blood pressure to hypertension within 5-year follow-up. Andishgar A; Bazmi S; Tabrizi R; Rismani M; Keshavarzian O; Pezeshki B; Ahmadizar F PLoS One; 2024; 19(3):e0300201. PubMed ID: 38483860 [TBL] [Abstract][Full Text] [Related]
16. Prediction of hyperuricemia in people taking low-dose aspirin using a machine learning algorithm: a cross-sectional study of the National Health and Nutrition Examination Survey. Zhu B; Yang L; Wu M; Wu Q; Liu K; Li Y; Guo W; Zhao Z Front Pharmacol; 2023; 14():1276149. PubMed ID: 38313076 [No Abstract] [Full Text] [Related]
17. Machine learning-based predictive modeling of depression in hypertensive populations. Lee C; Kim H PLoS One; 2022; 17(7):e0272330. PubMed ID: 35905087 [TBL] [Abstract][Full Text] [Related]
18. A machine learning model predicts stroke associated with blood cadmium level. Zuo W; Yang X Sci Rep; 2024 Jun; 14(1):14739. PubMed ID: 38926494 [TBL] [Abstract][Full Text] [Related]
19. Machine learning algorithms predicting bladder cancer associated with diabetes and hypertension: NHANES 2009 to 2018. Xu S; Huang J Medicine (Baltimore); 2024 Jan; 103(4):e36587. PubMed ID: 38277522 [TBL] [Abstract][Full Text] [Related]
20. A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population. Chowdhury MZI; Leung AA; Walker RL; Sikdar KC; O'Beirne M; Quan H; Turin TC Sci Rep; 2023 Jan; 13(1):13. PubMed ID: 36593280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]