These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 37162450)
61. A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior for Copper in High-Rate and Long-Cycling Sodium-Ion Batteries. Yan Z; Tang L; Huang Y; Hua W; Wang Y; Liu R; Gu Q; Indris S; Chou SL; Huang Y; Wu M; Dou SX Angew Chem Int Ed Engl; 2019 Jan; 58(5):1412-1416. PubMed ID: 30480349 [TBL] [Abstract][Full Text] [Related]
62. Improving High-Voltage Cycling Stability and High-Rate Capability of Sodium-Ion Layered Cathode Oxides through Trace Amounts of Low-Valence Metals. Xu L; Fan H; Li J; Tao Z; Jiang T; Li J; Cao TZ; Yu Y; Han W; Lei Y; Fan WF Langmuir; 2024 Sep; 40(36):19270-19278. PubMed ID: 39190822 [TBL] [Abstract][Full Text] [Related]
63. Sb-Doped Biphasic P2/O3-Type Mn-Rich Layered Oxide Cathode Material for High-Performance Sodium-Ion Batteries. Jamil S; Mudasar F; Yuan T; Fasehullah M; Ali G; Chae KH; Voznyy O; Zhan Y; Xu M ACS Appl Mater Interfaces; 2024 Mar; 16(12):14669-14679. PubMed ID: 38498683 [TBL] [Abstract][Full Text] [Related]
64. Regulating Cation Interactions for Zero-Strain and High-Voltage P2-type Na Zou P; Yao L; Wang C; Lee SJ; Li T; Xin HL Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202304628. PubMed ID: 37139583 [TBL] [Abstract][Full Text] [Related]
65. New Insights into the Roles of Mg in Improving the Rate Capability and Cycling Stability of O3-NaMn Zhang C; Gao R; Zheng L; Hao Y; Liu X ACS Appl Mater Interfaces; 2018 Apr; 10(13):10819-10827. PubMed ID: 29521494 [TBL] [Abstract][Full Text] [Related]
66. Microsphere Na Yu TY; Hwang JY; Aurbach D; Sun YK ACS Appl Mater Interfaces; 2017 Dec; 9(51):44534-44541. PubMed ID: 29210565 [TBL] [Abstract][Full Text] [Related]
67. Achieving a Deeply Desodiated Stabilized Cathode Material by the High Entropy Strategy for Sodium-ion Batteries. Liu Z; Liu R; Xu S; Tian J; Li J; Li H; Yu T; Chu S; M D'Angelo A; Pang WK; Zhang L; Guo S; Zhou H Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405620. PubMed ID: 38709194 [TBL] [Abstract][Full Text] [Related]
68. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568 [TBL] [Abstract][Full Text] [Related]
69. Ion Substitution Strategy of Manganese-Based Layered Oxide Cathodes for Advanced and Low-Cost Sodium Ion Batteries. Chang YX; Yu L; Xing X; Guo YJ; Xie ZY; Xu S Chem Rec; 2022 Oct; 22(10):e202200122. PubMed ID: 35832018 [TBL] [Abstract][Full Text] [Related]
70. Stabilizing Lattice Oxygen in a P2-Na Shao G; Kong W; Yu Y; Zhang J; Yang W; Yang J; Li Y; Liu X Inorg Chem; 2023 Jun; 62(24):9314-9323. PubMed ID: 37285310 [TBL] [Abstract][Full Text] [Related]
71. Stabilizing Cobalt-free Li-rich Layered Oxide Cathodes through Oxygen Lattice Regulation by Two-phase Ru Doping. Fan Y; Olsson E; Liang G; Wang Z; D'Angelo AM; Johannessen B; Thomsen L; Cowie B; Li J; Zhang F; Zhao Y; Pang WK; Cai Q; Guo Z Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202213806. PubMed ID: 36456529 [TBL] [Abstract][Full Text] [Related]
72. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Yun S; Yu J; Lee W; Lee H; Yoon WS Mater Horiz; 2023 Mar; 10(3):829-841. PubMed ID: 36597945 [TBL] [Abstract][Full Text] [Related]
73. Se-dopant Modulated Selective Co-Insertion of H Ye JJ; Li PH; Hou Z; Zhang W; Zhu W; Jin S; Ji H Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202410900. PubMed ID: 39010737 [TBL] [Abstract][Full Text] [Related]
74. Using Highly Electronegative Zn to Regulate the Superlattice Structure for the Na-Ion Layered Oxide Cathode with Superior Electrochemical Performance. Fang D; Feng J; Li J; Li J ACS Appl Mater Interfaces; 2023 Dec; 15(48):55633-55643. PubMed ID: 37984434 [TBL] [Abstract][Full Text] [Related]
75. Bulk-phase and interface stability strategies of manganese oxide cathodes for aqueous Zn-MnO Yang G; Wan H Front Chem; 2022; 10():1000337. PubMed ID: 36212062 [TBL] [Abstract][Full Text] [Related]
76. Achieving Stable Cycling Performance in a P2-Type Layered Oxide Cathode through a Synergic Li/Zn Doping for Sodium-Ion Batteries. Dong T; Tang X; Hassan MM; Wang W; Hu S; Jian Z; Chen W ACS Appl Mater Interfaces; 2024 Sep; 16(36):47378-47386. PubMed ID: 39186257 [TBL] [Abstract][Full Text] [Related]
77. Rational Regulation of High-Voltage Stability in Potassium Layered Oxide Cathodes. Wu L; Fu H; Lyu W; Cha L; Rao AM; Guo K; Zhou J; Wen S; Lu B ACS Nano; 2024 May; 18(20):13415-13427. PubMed ID: 38727526 [TBL] [Abstract][Full Text] [Related]
78. Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries. Gao S; Zhu Z; Fang H; Feng K; Zhong J; Hou M; Guo Y; Li F; Zhang W; Ma Z; Li F Adv Mater; 2024 Apr; 36(16):e2311523. PubMed ID: 38193311 [TBL] [Abstract][Full Text] [Related]
79. P2/O3 Biphasic Cathode Material through Magnesium Substitution for Sodium-Ion Batteries. Zhang Y; Chen J; Wang R; Wu L; Song W; Cao S; Shen Y; Zhang X; Wang X ACS Appl Mater Interfaces; 2024 Mar; 16(9):11349-11360. PubMed ID: 38381529 [TBL] [Abstract][Full Text] [Related]
80. Restraining Oxygen Loss and Boosting Reversible Oxygen Redox in a P2-Type Oxide Cathode by Trace Anion Substitution. Zhao C; Yang Q; Geng F; Li C; Zhang N; Ma J; Tong W; Hu B ACS Appl Mater Interfaces; 2021 Jan; 13(1):360-369. PubMed ID: 33378178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]