These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37162487)

  • 1. Controlling Hot Charge Carrier Transfer in Monolithic AlSiAl Heterostructures for Plasmonic On-Chip Energy Harvesting.
    Song Z; Sistani M; Schwingshandl F; Lugstein A
    Small; 2023 Sep; 19(36):e2301055. PubMed ID: 37162487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions.
    Sistani M; Bartmann MG; Güsken NA; Oulton RF; Keshmiri H; Luong MA; Momtaz ZS; Den Hertog MI; Lugstein A
    ACS Photonics; 2020 Jul; 7(7):1642-1648. PubMed ID: 32685608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot Charge Carrier Transmission from Plasmonic Nanostructures.
    Christopher P; Moskovits M
    Annu Rev Phys Chem; 2017 May; 68():379-398. PubMed ID: 28301756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective.
    Tang H; Chen CJ; Huang Z; Bright J; Meng G; Liu RS; Wu N
    J Chem Phys; 2020 Jun; 152(22):220901. PubMed ID: 32534522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.
    Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ
    Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated
    Hartelt M; Terekhin PN; Eul T; Mahro AK; Frisch B; Prinz E; Rethfeld B; Stadtmüller B; Aeschlimann M
    ACS Nano; 2021 Dec; 15(12):19559-19569. PubMed ID: 34852458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic glycerol oxidation enabled by surface plasmon polariton-induced hot carriers in Kretschmann configuration.
    Chung K; Zhu X; Zhuo X; Jang YJ; Choi CH; Lee JS; Kim SH; Kim M; Kim K; Kim D; Ham HC; Baba A; Wang J; Kim DH
    Nanoscale; 2019 Dec; 11(48):23234-23240. PubMed ID: 31782461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot hole transfer at the plasmonic semiconductor/semiconductor interface.
    Gutiérrez M; Lian Z; Cohen B; Sakamoto M; Douhal A
    Nanoscale; 2023 Jan; 15(2):657-666. PubMed ID: 36515217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Schottky-Barrier-Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "One-Stone-Two-Birds" Manner.
    Bai H; Lam SH; Yang J; Cheng X; Li S; Jiang R; Shao L; Wang J
    Adv Mater; 2022 Jan; 34(2):e2104226. PubMed ID: 34655458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Schottky barrier effect on plasmon-induced charge transfer.
    Wang X; Gao S; Ma J
    Nanoscale; 2023 Jan; 15(4):1754-1762. PubMed ID: 36598756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-lived modulation of plasmonic absorption by ballistic thermal injection.
    Tomko JA; Runnerstrom EL; Wang YS; Chu W; Nolen JR; Olson DH; Kelley KP; Cleri A; Nordlander J; Caldwell JD; Prezhdo OV; Maria JP; Hopkins PE
    Nat Nanotechnol; 2021 Jan; 16(1):47-51. PubMed ID: 33169011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-level Manipulation of Interface Charge Transfer on Plasmonic Metal/MOF Heterostructures.
    Wang S; Tang D; Zhang Y; Zhao J
    Chemphyschem; 2023 Jan; 24(1):e202200565. PubMed ID: 36124812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing Plasmon-Induced Hot Carriers at the Interfaces With Ferroelectrics.
    Kumar V; O'Donnell SC; Sang DL; Maggard PA; Wang G
    Front Chem; 2019; 7():299. PubMed ID: 31139615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Plasmon-Driven Photoelectrocatalysis.
    Robatjazi H; Bahauddin SM; Doiron C; Thomann I
    Nano Lett; 2015 Sep; 15(9):6155-61. PubMed ID: 26243130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.