These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37162487)

  • 21. Direct Plasmon-Driven Photoelectrocatalysis.
    Robatjazi H; Bahauddin SM; Doiron C; Thomann I
    Nano Lett; 2015 Sep; 15(9):6155-61. PubMed ID: 26243130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces.
    Kumar PV; Rossi TP; Marti-Dafcik D; Reichmuth D; Kuisma M; Erhart P; Puska MJ; Norris DJ
    ACS Nano; 2019 Mar; 13(3):3188-3195. PubMed ID: 30768238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the plasmonic photovoltaic.
    Mubeen S; Lee J; Lee WR; Singh N; Stucky GD; Moskovits M
    ACS Nano; 2014 Jun; 8(6):6066-73. PubMed ID: 24861280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices.
    Tagliabue G; Jermyn AS; Sundararaman R; Welch AJ; DuChene JS; Pala R; Davoyan AR; Narang P; Atwater HA
    Nat Commun; 2018 Aug; 9(1):3394. PubMed ID: 30140064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infrared driven hot electron generation and transfer from non-noble metal plasmonic nanocrystals.
    Zhou D; Li X; Zhou Q; Zhu H
    Nat Commun; 2020 Jun; 11(1):2944. PubMed ID: 32522995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials.
    Zhang J; Guan M; Lischner J; Meng S; Prezhdo OV
    Nano Lett; 2019 May; 19(5):3187-3193. PubMed ID: 30995064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Nickel-TiO
    He S; Huang J; Goodsell JL; Angerhofer A; Wei WD
    Angew Chem Int Ed Engl; 2019 Apr; 58(18):6038-6041. PubMed ID: 30919543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry.
    Zhou L; Huang Q; Xia Y
    Chem Rev; 2024 Jul; 124(14):8597-8619. PubMed ID: 38829921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions.
    Zhang Y; Nelson T; Tretiak S; Guo H; Schatz GC
    ACS Nano; 2018 Aug; 12(8):8415-8422. PubMed ID: 30001116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Schottky-barrier-free plasmonic photocatalysts.
    An K; Hu J; Wang J
    Phys Chem Chem Phys; 2023 Jul; 25(29):19358-19370. PubMed ID: 37439122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Observation of Photoinduced Charge Separation at Transition-Metal Nitride-Semiconductor Interfaces.
    Yu MW; Ishii S; Shinde SL; Tanjaya NK; Chen KP; Nagao T
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56562-56567. PubMed ID: 33259198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-Plasmon-Driven Hot Electron Photochemistry.
    Zhang Y; He S; Guo W; Hu Y; Huang J; Mulcahy JR; Wei WD
    Chem Rev; 2018 Mar; 118(6):2927-2954. PubMed ID: 29190069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon-induced efficient hot carrier generation in graphene on gold ultrathin film with periodic array of holes: Ultrafast pump-probe spectroscopy.
    Prakash G; Srivastava RK; Gupta SN; Sood AK
    J Chem Phys; 2019 Dec; 151(23):234712. PubMed ID: 31864269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of Efficient Plasmonic Hot-Electron Injection in Gold Nanoparticle-TiO
    Ratchford DC; Dunkelberger AD; Vurgaftman I; Owrutsky JC; Pehrsson PE
    Nano Lett; 2017 Oct; 17(10):6047-6055. PubMed ID: 28850243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems.
    Hattori Y; Meng J; Zheng K; Meier de Andrade A; Kullgren J; Broqvist P; Nordlander P; Sá J
    Nano Lett; 2021 Jan; 21(2):1083-1089. PubMed ID: 33416331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.