BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37162839)

  • 1. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses.
    Sun ED; Ma R; Navarro Negredo P; Brunet A; Zou J
    bioRxiv; 2023 Sep; ():. PubMed ID: 37162839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses.
    Sun ED; Ma R; Navarro Negredo P; Brunet A; Zou J
    Nat Methods; 2024 Mar; 21(3):444-454. PubMed ID: 38347138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models.
    Gao D; Ning J; Liu G; Sun S; Dang X
    Front Genet; 2022; 13():893522. PubMed ID: 35692845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ENGEP: advancing spatial transcriptomics with accurate unmeasured gene expression prediction.
    Yang ST; Zhang XF
    Genome Biol; 2023 Dec; 24(1):293. PubMed ID: 38129866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry.
    Zhang Q; Jiang S; Schroeder A; Hu J; Li K; Zhang B; Dai D; Lee EB; Xiao R; Li M
    Nat Commun; 2023 Jul; 14(1):4050. PubMed ID: 37422469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell type-specific inference of differential expression in spatial transcriptomics.
    Cable DM; Murray E; Shanmugam V; Zhang S; Zou LS; Diao M; Chen H; Macosko EZ; Irizarry RA; Chen F
    Nat Methods; 2022 Sep; 19(9):1076-1087. PubMed ID: 36050488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.
    Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DIST: spatial transcriptomics enhancement using deep learning.
    Zhao Y; Wang K; Hu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and transfer of spatial transcriptomics signatures for cancer diagnosis.
    Yoosuf N; Navarro JF; Salmén F; Ståhl PL; Daub CO
    Breast Cancer Res; 2020 Jan; 22(1):6. PubMed ID: 31931856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new analytical framework for missing data imputation and classification with uncertainty: Missing data imputation and heart failure readmission prediction.
    Hu Z; Du D
    PLoS One; 2020; 15(9):e0237724. PubMed ID: 32956366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised spatially embedded deep representation of spatial transcriptomics.
    Xu H; Fu H; Long Y; Ang KS; Sethi R; Chong K; Li M; Uddamvathanak R; Lee HK; Ling J; Chen A; Shao L; Liu L; Chen J
    Genome Med; 2024 Jan; 16(1):12. PubMed ID: 38217035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution.
    Li B; Zhang W; Guo C; Xu H; Li L; Fang M; Hu Y; Zhang X; Yao X; Tang M; Liu K; Zhao X; Lin J; Cheng L; Chen F; Xue T; Qu K
    Nat Methods; 2022 Jun; 19(6):662-670. PubMed ID: 35577954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data.
    Wang L; Maletic-Savatic M; Liu Z
    Nat Commun; 2022 Nov; 13(1):6912. PubMed ID: 36376296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST.
    Liu W; Liao X; Luo Z; Yang Y; Lau MC; Jiao Y; Shi X; Zhai W; Ji H; Yeong J; Liu J
    Nat Commun; 2023 Jan; 14(1):296. PubMed ID: 36653349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the replicability of spatial gene expression using atlas data from the adult mouse brain.
    Lu S; Ortiz C; Fürth D; Fischer S; Meletis K; Zador A; Gillis J
    PLoS Biol; 2021 Jul; 19(7):e3001341. PubMed ID: 34280183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning.
    Coleman K; Hu J; Schroeder A; Lee EB; Li M
    Commun Biol; 2023 Apr; 6(1):378. PubMed ID: 37029267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.