These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37162846)

  • 1. Identifying Quantitatively Differential Chromosomal Compartmentalization Changes and Their Biological Significance from Hi-C data using DARIC.
    Kai Y; Liu N; Orkin SH; Yuan GC
    Res Sq; 2023 Apr; ():. PubMed ID: 37162846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying quantitatively differential chromosomal compartmentalization changes and their biological significance from Hi-C data using DARIC.
    Kai Y; Liu N; Orkin SH; Yuan GC
    BMC Genomics; 2023 Oct; 24(1):614. PubMed ID: 37833630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments.
    Magnitov MD; Garaev AK; Tyakht AV; Ulianov SV; Razin SV
    BMC Bioinformatics; 2022 Apr; 23(1):116. PubMed ID: 35366792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPIN reveals genome-wide landscape of nuclear compartmentalization.
    Wang Y; Zhang Y; Zhang R; van Schaik T; Zhang L; Sasaki T; Peric-Hupkes D; Chen Y; Gilbert DM; van Steensel B; Belmont AS; Ma J
    Genome Biol; 2021 Jan; 22(1):36. PubMed ID: 33446254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery.
    Siegenfeld AP; Roseman SA; Roh H; Lue NZ; Wagen CC; Zhou E; Johnstone SE; Aryee MJ; Liau BB
    Nat Commun; 2022 Jul; 13(1):4199. PubMed ID: 35859152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions.
    Nurick I; Shamir R; Elkon R
    Epigenetics Chromatin; 2018 Aug; 11(1):49. PubMed ID: 30157915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting chromosomal compartments directly from the nucleotide sequence with DNA-DDA.
    Lainscsek X; Taher L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37264486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contributions of nuclear lamina association and genome compartmentalization to gene regulation.
    Das P; San Martin R; McCord RP
    Nucleus; 2023 Dec; 14(1):2197693. PubMed ID: 37017584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K9 methylation promotes formation of genome compartments in
    Bian Q; Anderson EC; Yang Q; Meyer BJ
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11459-11470. PubMed ID: 32385148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterochromatin drives compartmentalization of inverted and conventional nuclei.
    Falk M; Feodorova Y; Naumova N; Imakaev M; Lajoie BR; Leonhardt H; Joffe B; Dekker J; Fudenberg G; Solovei I; Mirny LA
    Nature; 2019 Jun; 570(7761):395-399. PubMed ID: 31168090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hi-C analyses with GENOVA: a case study with cohesin variants.
    van der Weide RH; van den Brand T; Haarhuis JHI; Teunissen H; Rowland BD; de Wit E
    NAR Genom Bioinform; 2021 Jun; 3(2):lqab040. PubMed ID: 34046591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensive Chromatin Structure-Function Associations Revealed by Accurate 3D Compartmentalization Characterization.
    Wen Z; Zhang W; Zhong Q; Xu J; Hou C; Qin ZS; Li L
    Front Cell Dev Biol; 2022; 10():845118. PubMed ID: 35517497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-actin mediated H3K27ac changes demonstrate the link between compartment switching and enhancer-dependent transcriptional regulation.
    Mahmood SR; Said NHE; Gunsalus KC; Percipalle P
    Genome Biol; 2023 Jan; 24(1):18. PubMed ID: 36698204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CscoreTool-M infers 3D sub-compartment probabilities within cell population.
    Zheng X; Tran JR; Zheng Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37166448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint inference and alignment of genome structures enables characterization of compartment-independent reorganization across cell types.
    Rieber L; Mahony S
    Epigenetics Chromatin; 2019 Oct; 12(1):61. PubMed ID: 31594535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Principles of Chromatin Architecture Associated With Organ-Specific Gene Regulation.
    Chapski DJ; Rosa-Garrido M; Hua N; Alber F; Vondriska TM
    Front Cardiovasc Med; 2018; 5():186. PubMed ID: 30697540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing.
    Xu L; Yin L; Qi Y; Tan X; Gao M; Peng J
    Acta Pharm Sin B; 2021 Oct; 11(10):3150-3164. PubMed ID: 34729306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.