BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37162872)

  • 1. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease.
    Choi DE; Shin JW; Zeng S; Hong EP; Jang JH; Loupe JM; Wheeler VC; Stutzman HE; Kleinstiver BP; Lee JM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease.
    Choi DE; Shin JW; Zeng S; Hong EP; Jang JH; Loupe JM; Wheeler VC; Stutzman HE; Kleinstiver B; Lee JM
    Elife; 2024 Jun; 12():. PubMed ID: 38869243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Influence of TBP CAG/CAA Repeats in Conjunction with HTT CAG Repeats on Huntington's Disease Age at Onset in a Brazilian Sample.
    da Silva IDS; Apolinário TA; de Andrade Agostinho L; Paiva CLA
    J Mol Neurosci; 2022 May; 72(5):1116-1124. PubMed ID: 35275350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out.
    Loupe JM; Pinto RM; Kim KH; Gillis T; Mysore JS; Andrew MA; Kovalenko M; Murtha R; Seong I; Gusella JF; Kwak S; Howland D; Lee R; Lee JM; Wheeler VC; MacDonald ME
    Hum Mol Genet; 2020 Nov; 29(18):3044-3053. PubMed ID: 32876667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of CAA interruption and intergenerational CAG instability in Chinese patients with Huntington's disease.
    Bao YF; Li XY; Dong Y; Wu ZY
    J Mol Med (Berl); 2023 Jul; 101(7):869-876. PubMed ID: 37231148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
    Wright GEB; Black HF; Collins JA; Gall-Duncan T; Caron NS; Pearson CE; Hayden MR
    Lancet Neurol; 2020 Nov; 19(11):930-939. PubMed ID: 33098802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice.
    Gu X; Richman J; Langfelder P; Wang N; Zhang S; Bañez-Coronel M; Wang HB; Yang L; Ramanathan L; Deng L; Park CS; Choi CR; Cantle JP; Gao F; Gray M; Coppola G; Bates GP; Ranum LPW; Horvath S; Colwell CS; Yang XW
    Neuron; 2022 Apr; 110(7):1173-1192.e7. PubMed ID: 35114102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease.
    Aldous SG; Smith EJ; Landles C; Osborne GF; Cañibano-Pico M; Nita IM; Phillips J; Zhang Y; Jin B; Hirst MB; Benn CL; Bond BC; Edelmann W; Greene JR; Bates GP
    Brain; 2024 May; 147(5):1784-1798. PubMed ID: 38387080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated analysis on transcriptome and behaviors defines HTT repeat-dependent network modules in Huntington's disease.
    Huang L; Fang L; Liu Q; Torshizi AD; Wang K
    Genes Dis; 2022 Mar; 9(2):479-493. PubMed ID: 35224162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased Somatic Instability, Hastening Onset of Huntington Disease.
    Wright GEB; Collins JA; Kay C; McDonald C; Dolzhenko E; Xia Q; Bečanović K; Drögemöller BI; Semaka A; Nguyen CM; Trost B; Richards F; Bijlsma EK; Squitieri F; Ross CJD; Scherer SW; Eberle MA; Yuen RKC; Hayden MR
    Am J Hum Genet; 2019 Jun; 104(6):1116-1126. PubMed ID: 31104771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CAG Repeat Not Polyglutamine Length Determines Timing of Huntington's Disease Onset.
    ;
    Cell; 2019 Aug; 178(4):887-900.e14. PubMed ID: 31398342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington's disease knock-in mice.
    Lloret A; Dragileva E; Teed A; Espinola J; Fossale E; Gillis T; Lopez E; Myers RH; MacDonald ME; Wheeler VC
    Hum Mol Genet; 2006 Jun; 15(12):2015-24. PubMed ID: 16687439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splice modulators target PMS1 to reduce somatic expansion of the Huntington's disease-associated CAG repeat.
    McLean ZL; Gao D; Correia K; Roy JCL; Shibata S; Farnum IN; Valdepenas-Mellor Z; Kovalenko M; Rapuru M; Morini E; Ruliera J; Gillis T; Lucente D; Kleinstiver BP; Lee JM; MacDonald ME; Wheeler VC; Mouro Pinto R; Gusella JF
    Nat Commun; 2024 Apr; 15(1):3182. PubMed ID: 38609352
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    McLean ZL; Gao D; Correia K; Roy JCL; Shibata S; Farnum IN; Valdepenas-Mellor Z; Rapuru M; Morini E; Ruliera J; Gillis T; Lucente D; Kleinstiver BP; Lee JM; MacDonald ME; Wheeler VC; Pinto RM; Gusella JF
    bioRxiv; 2023 Jul; ():. PubMed ID: 37547003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver.
    Lee JM; Pinto RM; Gillis T; St Claire JC; Wheeler VC
    PLoS One; 2011; 6(8):e23647. PubMed ID: 21897851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes.
    Ciosi M; Maxwell A; Cumming SA; Hensman Moss DJ; Alshammari AM; Flower MD; Durr A; Leavitt BR; Roos RAC; ; ; Holmans P; Jones L; Langbehn DR; Kwak S; Tabrizi SJ; Monckton DG
    EBioMedicine; 2019 Oct; 48():568-580. PubMed ID: 31607598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels.
    Shin A; Shin B; Shin JW; Kim KH; Atwal RS; Hope JM; Gillis T; Leszyk JD; Shaffer SA; Lee R; Kwak S; MacDonald ME; Gusella JF; Seong IS; Lee JM
    Hum Mol Genet; 2017 Apr; 26(7):1258-1267. PubMed ID: 28165127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat.
    Goold R; Flower M; Moss DH; Medway C; Wood-Kaczmar A; Andre R; Farshim P; Bates GP; Holmans P; Jones L; Tabrizi SJ
    Hum Mol Genet; 2019 Feb; 28(4):650-661. PubMed ID: 30358836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model.
    Landles C; Milton RE; Ali N; Flomen R; Flower M; Schindler F; Gomez-Paredes C; Bondulich MK; Osborne GF; Goodwin D; Salsbury G; Benn CL; Sathasivam K; Smith EJ; Tabrizi SJ; Wanker EE; Bates GP
    Brain Commun; 2020; 2(2):fcaa066. PubMed ID: 32954323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference.
    Murmann AE; Patel M; Jeong SY; Bartom ET; Jennifer Morton A; Peter ME
    Cell Death Dis; 2022 Dec; 13(12):1078. PubMed ID: 36585400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.