These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37162914)

  • 1. Model-based dimensionality reduction for single-cell RNA-seq using generalized bilinear models.
    Nicol PB; Miller JW
    bioRxiv; 2024 Feb; ():. PubMed ID: 37162914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data.
    Koch FC; Sutton GJ; Voineagu I; Vafaee F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust nonlinear low-dimensional manifold for single cell RNA-seq data.
    Verma A; Engelhardt BE
    BMC Bioinformatics; 2020 Jul; 21(1):324. PubMed ID: 32693778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder.
    Zhao J; Wang N; Wang H; Zheng C; Su Y
    Front Genet; 2021; 12():733906. PubMed ID: 34512734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K-Nearest-Neighbors Induced Topological PCA for Single Cell RNA-Sequence Data Analysis.
    Cottrell S; Hozumi Y; Wei GW
    ArXiv; 2023 Oct; ():. PubMed ID: 37961744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimensionality Reduction of Single-Cell RNA Sequencing Data by Combining Entropy and Denoising AutoEncoder.
    Zhu X; Li J; Lin Y; Zhao L; Wang J; Peng X
    J Comput Biol; 2022 Oct; 29(10):1074-1084. PubMed ID: 35834604
    [No Abstract]   [Full Text] [Related]  

  • 11. scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis.
    Tian SW; Ni JC; Wang YT; Zheng CH; Ji CM
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):6133-6143. PubMed ID: 37751336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrastive self-supervised clustering of scRNA-seq data.
    Ciortan M; Defrance M
    BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-GCN-based deep clustering with triplet contrast for ScRNA-seq data analysis.
    Wang L; Li W; Xie W; Wang R; Yu K
    Comput Biol Chem; 2023 Oct; 106():107924. PubMed ID: 37487251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means.
    Hu H; Li Z; Li X; Yu M; Pan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking principal component analysis for large-scale single-cell RNA-sequencing.
    Tsuyuzaki K; Sato H; Sato K; Nikaido I
    Genome Biol; 2020 Jan; 21(1):9. PubMed ID: 31955711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of scRNA-seq data analysis method combinations.
    Xu L; Xue T; Ding W; Shen L
    Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis.
    Sun S; Zhu J; Ma Y; Zhou X
    Genome Biol; 2019 Dec; 20(1):269. PubMed ID: 31823809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder.
    Zhao JP; Hou TS; Su Y; Zheng CH
    Methods; 2022 Dec; 208():66-74. PubMed ID: 36377123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.