These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37163089)

  • 1. Butyrate enhances Clostridioides difficile sporulation
    Baldassare MA; Bhattacharjee D; Coles JD; Nelson S; McCollum CA; Seekatz AM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37163089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Butyrate enhances
    Baldassare MA; Bhattacharjee D; Coles JD; Nelson S; McCollum CA; Seekatz AM
    J Bacteriol; 2023 Sep; 205(9):e0013823. PubMed ID: 37655912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous butyrate inhibits butyrogenic metabolism and alters virulence phenotypes in
    Pensinger DA; Dobrila HA; Stevenson DM; Hryckowian ND; Amador-Noguez D; Hryckowian AJ
    mBio; 2024 Mar; 15(3):e0253523. PubMed ID: 38289141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butyrate Differentiates Permissiveness to Clostridioides difficile Infection and Influences Growth of Diverse C. difficile Isolates.
    Pensinger DA; Fisher AT; Dobrila HA; Van Treuren W; Gardner JO; Higginbottom SK; Carter MM; Schumann B; Bertozzi CR; Anikst V; Martin C; Robilotti EV; Chow JM; Buck RH; Tompkins LS; Sonnenburg JL; Hryckowian AJ
    Infect Immun; 2023 Feb; 91(2):e0057022. PubMed ID: 36692308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous butyrate inhibits butyrogenic metabolism and alters expression of virulence genes in
    Pensinger DA; Dobrila HA; Stevenson DM; Davis NM; Amador-Noguez D; Hryckowian AJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.
    Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A
    mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of pH on Clostridioides difficile Sporulation and Physiology.
    Wetzel D; McBride SM
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811041
    [No Abstract]   [Full Text] [Related]  

  • 8. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Short-Chain Fatty Acids Propionate and Butyrate Augment Adherent-Invasive Escherichia coli Virulence but Repress Inflammation in a Human Intestinal Enteroid Model of Infection.
    Pace F; Rudolph SE; Chen Y; Bao B; Kaplan DL; Watnick PI
    Microbiol Spectr; 2021 Oct; 9(2):e0136921. PubMed ID: 34612688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response Regulator CD1688 Is a Negative Modulator of Sporulation in Clostridioides difficile.
    Kempher ML; Morris SC; Shadid TM; Menon SK; Ballard JD; West AH
    J Bacteriol; 2022 Aug; 204(8):e0013022. PubMed ID: 35852332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A network of small RNAs regulates sporulation initiation in Clostridioides difficile.
    Fuchs M; Lamm-Schmidt V; Lenče T; Sulzer J; Bublitz A; Wackenreuter J; Gerovac M; Strowig T; Faber F
    EMBO J; 2023 Jun; 42(12):e112858. PubMed ID: 37140366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of deoxycholate on
    Usui Y; Ayibieke A; Kamiichi Y; Okugawa S; Moriya K; Tohda S; Saito R
    Heliyon; 2020 Apr; 6(4):e03717. PubMed ID: 32322715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory Role of Anti-Sigma Factor RsbW in Clostridioides difficile Stress Response, Persistence, and Infection.
    Cheng JKJ; Đapa T; Chan IYL; MacCreath TO; Slater R; Unnikrishnan M
    J Bacteriol; 2023 May; 205(5):e0046622. PubMed ID: 37098979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Children gut microbiota exhibits a different composition and metabolic profile after
    Horvat S; Mahnic A; Makuc D; Pečnik K; Plavec J; Rupnik M
    Front Microbiol; 2022; 13():1042526. PubMed ID: 36569098
    [No Abstract]   [Full Text] [Related]  

  • 15. Three Orphan Histidine Kinases Inhibit Clostridioides difficile Sporulation.
    Edwards AN; Wetzel D; DiCandia MA; McBride SM
    J Bacteriol; 2022 May; 204(5):e0010622. PubMed ID: 35416689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of short-chain fatty acids in Clostridioides difficile infection: A review.
    Ouyang ZR; Niu XR; Wang WG; Zhao JH
    Anaerobe; 2022 Jun; 75():102585. PubMed ID: 35545183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis.
    Jenior ML; Leslie JL; Powers DA; Garrett EM; Walker KA; Dickenson ME; Petri WA; Tamayo R; Papin JA
    mSystems; 2021 Oct; 6(5):e0091921. PubMed ID: 34609164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic reconstruction of short-chain fatty acid production by the human gut microbiota.
    Frolova MS; Suvorova IA; Iablokov SN; Petrov SN; Rodionov DA
    Front Mol Biosci; 2022; 9():949563. PubMed ID: 36032669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis.
    Gregory AL; Pensinger DA; Hryckowian AJ
    PLoS Pathog; 2021 Oct; 17(10):e1009959. PubMed ID: 34673840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.