These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37163364)

  • 1. Deep Generation Model Guided by the Docking Score for Active Molecular Design.
    Yang Y; Hsieh CY; Kang Y; Hou T; Liu H; Yao X
    J Chem Inf Model; 2023 May; 63(10):2983-2991. PubMed ID: 37163364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Low-Toxicity Chemical Space with Deep Learning for Molecular Generation.
    Yang Y; Wu Z; Yao X; Kang Y; Hou T; Hsieh CY; Liu H
    J Chem Inf Model; 2022 Jul; 62(13):3191-3199. PubMed ID: 35713712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pharmacophore-guided deep learning approach for bioactive molecular generation.
    Zhu H; Zhou R; Cao D; Tang J; Li M
    Nat Commun; 2023 Oct; 14(1):6234. PubMed ID: 37803000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Matsukiyo Y; Yamanaka C; Yamanishi Y
    J Chem Inf Model; 2024 Apr; 64(7):2345-2355. PubMed ID: 37768595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular substructure tree generative model for de novo drug design.
    Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design.
    Wang M; Hsieh CY; Wang J; Wang D; Weng G; Shen C; Yao X; Bing Z; Li H; Cao D; Hou T
    J Med Chem; 2022 Jul; 65(13):9478-9492. PubMed ID: 35713420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing an Improved Cycle Architecture for AI-Based Generation of New Structures Aimed at Drug Discovery.
    Zhang C; Xie L; Lu X; Mao R; Xu L; Xu X
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.
    Zhang Y; Jiao Y; Xiong X; Liu H; Ran T; Xu J; Lu S; Xu A; Pan J; Qiao X; Shi Z; Lu T; Chen Y
    Mol Divers; 2015 Nov; 19(4):895-913. PubMed ID: 26022686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery.
    Boitreaud J; Mallet V; Oliver C; Waldispühl J
    J Chem Inf Model; 2020 Dec; 60(12):5658-5666. PubMed ID: 32986426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Based
    Ma B; Terayama K; Matsumoto S; Isaka Y; Sasakura Y; Iwata H; Araki M; Okuno Y
    J Chem Inf Model; 2021 Jul; 61(7):3304-3313. PubMed ID: 34242036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead generation of cysteine based mesenchymal epithelial transition (c-Met) kinase inhibitors: Using structure-based scaffold hopping, 3D-QSAR pharmacophore modeling, virtual screening, molecular docking, and molecular dynamics simulation.
    Raafat A; Mowafy S; Abouseri SM; Fouad MA; Farag NA
    Comput Biol Med; 2022 Jul; 146():105526. PubMed ID: 35487125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MGCVAE: Multi-Objective Inverse Design via Molecular Graph Conditional Variational Autoencoder.
    Lee M; Min K
    J Chem Inf Model; 2022 Jun; 62(12):2943-2950. PubMed ID: 35666276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular generation strategy and optimization based on A2C reinforcement learning in de novo drug design.
    Wang Q; Wei Z; Hu X; Wang Z; Dong Y; Liu H
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37971970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional Molecular Design with Deep Generative Models.
    Kang S; Cho K
    J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-guided Design and Optimization of small Molecules as Pancreatic Lipase Inhibitors using Pharmacophore, 3D-QSAR, Molecular Docking, and Molecular Dynamics Simulation Studies.
    Modanwal S; Mulpuru V; Mishra N
    Curr Comput Aided Drug Des; 2023; 19(4):258-277. PubMed ID: 36597611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery.
    Pham TH; Xie L; Zhang P
    Proc SIAM Int Conf Data Min; 2022; 2022():720-728. PubMed ID: 35509686
    [No Abstract]   [Full Text] [Related]  

  • 18. 3D-QSAR pharmacophore modelling, virtual screening and docking studies for lead discovery of a novel scaffold for VEGFR 2 inhibitors: Design, synthesis and biological evaluation.
    Sobhy MK; Mowafy S; Lasheen DS; Farag NA; Abouzid KAM
    Bioorg Chem; 2019 Aug; 89():102988. PubMed ID: 31146197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable structural information for rational design of benzoxazole type potential cholesteryl ester transfer protein (CETP) inhibitors through multiple validated modeling techniques.
    Amin SA; Adhikari N; Gayen S; Jha T
    J Biomol Struct Dyn; 2019 Oct; 37(17):4528-4541. PubMed ID: 30488780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combiphore (Structure and Ligand Based Pharmacophore) - Approach for the Design of GPR40 Modulators in the Management of Diabetes.
    Gajjar KA; Gajjar AK
    Curr Drug Discov Technol; 2020; 17(2):233-247. PubMed ID: 30306872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.