BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37163398)

  • 1. MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder.
    Wang Y; Gao YL; Wang J; Li F; Liu JX
    IEEE J Biomed Health Inform; 2023 Jul; 27(7):3686-3694. PubMed ID: 37163398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RLFDDA: a meta-path based graph representation learning model for drug-disease association prediction.
    Zhang ML; Zhao BW; Su XR; He YZ; Yang Y; Hu L
    BMC Bioinformatics; 2022 Dec; 23(1):516. PubMed ID: 36456957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction.
    Jiao CN; Zhou F; Liu BM; Zheng CH; Liu JX; Gao YL
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1110-1121. PubMed ID: 38055359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity measures-based graph co-contrastive learning for drug-disease association prediction.
    Gao Z; Ma H; Zhang X; Wang Y; Wu Z
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks.
    Zhao BW; Su XR; Yang Y; Li DX; Li GD; Hu PW; Zhao YG; Hu L
    Methods; 2023 Dec; 220():106-114. PubMed ID: 37972913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Graph Representation Approach Based on Light Gradient Boosting Machine for Predicting Drug-Disease Associations.
    Wang Y; Liu JX; Wang J; Shang J; Gao YL
    J Comput Biol; 2023 Aug; 30(8):937-947. PubMed ID: 37486669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GSAMDA: a computational model for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder.
    Tan Y; Zou J; Kuang L; Wang X; Zeng B; Zhang Z; Wang L
    BMC Bioinformatics; 2022 Nov; 23(1):492. PubMed ID: 36401174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Neighbor Topologies Based on Meta-Paths and Node Attributes for Predicting Drug-Related Diseases.
    Xuan P; Lu Z; Zhang T; Liu Y; Nakaguchi T
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BGMSDDA: a bipartite graph diffusion algorithm with multiple similarity integration for drug-disease association prediction.
    Xie G; Li J; Gu G; Sun Y; Lin Z; Zhu Y; Wang W
    Mol Omics; 2021 Dec; 17(6):997-1011. PubMed ID: 34610633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network.
    Jiang H; Huang Y
    BMC Bioinformatics; 2022 Jan; 23(1):9. PubMed ID: 34983364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction.
    Xuan P; Wang M; Liu Y; Wang D; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35470853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of microbe-drug associations based on a modified graph attention variational autoencoder and random forest.
    Wang B; Ma F; Du X; Zhang G; Li J
    Front Microbiol; 2024; 15():1394302. PubMed ID: 38881658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph Autoencoder with Preserving Node Attribute Similarity.
    Lin M; Wen K; Zhu X; Zhao H; Sun X
    Entropy (Basel); 2023 Mar; 25(4):. PubMed ID: 37190356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.