These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 37163531)
21. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. Nguyen AD; Kim D; Lee EY BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173 [TBL] [Abstract][Full Text] [Related]
22. Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. strain Rockwell (ATCC 49242). Stein LY; Bringel F; DiSpirito AA; Han S; Jetten MS; Kalyuzhnaya MG; Kits KD; Klotz MG; Op den Camp HJ; Semrau JD; Vuilleumier S; Bruce DC; Cheng JF; Davenport KW; Goodwin L; Han S; Hauser L; Lajus A; Land ML; Lapidus A; Lucas S; Médigue C; Pitluck S; Woyke T J Bacteriol; 2011 May; 193(10):2668-9. PubMed ID: 21441518 [TBL] [Abstract][Full Text] [Related]
23. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing 'signature' fatty acids of type I methanotrophs. Dedysh SN; Belova SE; Bodelier PLE; Smirnova KV; Khmelenina VN; Chidthaisong A; Trotsenko YA; Liesack W; Dunfield PF Int J Syst Evol Microbiol; 2007 Mar; 57(Pt 3):472-479. PubMed ID: 17329771 [TBL] [Abstract][Full Text] [Related]
24. Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential. Dam B; Dam S; Kube M; Reinhardt R; Liesack W J Bacteriol; 2012 Nov; 194(21):6008-9. PubMed ID: 23045511 [TBL] [Abstract][Full Text] [Related]
25. Metabolome profiles of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell in response to carbon and nitrogen source. Lazic M; Sugden S; Sauvageau D; Stein LY FEMS Microbiol Lett; 2021 Feb; 368(2):. PubMed ID: 33378457 [TBL] [Abstract][Full Text] [Related]
26. Insights into the Genomic Potential of a Gontijo JB; Paula FS; Venturini AM; Mandro JA; Bodelier PLE; Tsai SM Microorganisms; 2022 Aug; 10(9):. PubMed ID: 36144349 [TBL] [Abstract][Full Text] [Related]
27. [Sequence analysis of 16S rDNA and pmoCAB gene cluster of trichloroethylene-degrading methanotroph]. Zhang Y; Chen H; Gao Y; Xing Z; Zhao T Sheng Wu Gong Cheng Xue Bao; 2014 Dec; 30(12):1912-23. PubMed ID: 26020084 [TBL] [Abstract][Full Text] [Related]
28. Isolation of a facultative methanotroph Methylocystis iwaonis SD4 from rice rhizosphere and establishment of rapid genetic tools for it. Wang Y; Wang Y; Zhou K; Zhang H; Cheng M; Wang B; Yan X Biotechnol Lett; 2024 Aug; 46(4):713-724. PubMed ID: 38733438 [TBL] [Abstract][Full Text] [Related]
29. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Belova SE; Kulichevskaya IS; Bodelier PLE; Dedysh SN Int J Syst Evol Microbiol; 2013 Mar; 63(Pt 3):1096-1104. PubMed ID: 22707532 [TBL] [Abstract][Full Text] [Related]
30. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Baani M; Liesack W Proc Natl Acad Sci U S A; 2008 Jul; 105(29):10203-8. PubMed ID: 18632585 [TBL] [Abstract][Full Text] [Related]
31. Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Jung GY; Rhee SK; Han YS; Kim SJ Microorganisms; 2020 Nov; 8(11):. PubMed ID: 33147874 [TBL] [Abstract][Full Text] [Related]
32. Heterologous Biosynthesis of Methanobactin from Peng P; DiSpirito AA; Lewis BJ; Nott JD; Semrau JD ACS Synth Biol; 2024 Aug; 13(8):2347-2356. PubMed ID: 39109930 [TBL] [Abstract][Full Text] [Related]
33. Crude-MS Strategy for in-Depth Proteome Analysis of the Methane-Oxidizing Methylocystis sp. strain SC2. Hakobyan A; Liesack W; Glatter T J Proteome Res; 2018 Sep; 17(9):3086-3103. PubMed ID: 30019905 [TBL] [Abstract][Full Text] [Related]
34. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Hakobyan A; Zhu J; Glatter T; Paczia N; Liesack W Metab Eng; 2020 Sep; 61():181-196. PubMed ID: 32479801 [TBL] [Abstract][Full Text] [Related]
35. Enrichment of Methylocystis dominant mixed culture from rice field for PHB production. Kulkarni PP; Chavan SB; Deshpande MS; Sagotra D; Kumbhar PS; Ghosalkar AR J Biotechnol; 2022 Jan; 343():62-70. PubMed ID: 34838616 [TBL] [Abstract][Full Text] [Related]
36. Elucidating the influence of environmental factors on biogas-based polyhydroxybutyrate production by Methylocystis hirsuta CSC1. Rodríguez Y; Firmino PIM; Arnáiz E; Lebrero R; Muñoz R Sci Total Environ; 2020 Mar; 706():135136. PubMed ID: 31862586 [TBL] [Abstract][Full Text] [Related]
37. Production of (R)-3-hydroxybutyric acid from methane by in vivo depolymerization of polyhydroxybutyrate in Methylocystis parvus OBBP. Yáñez L; Rodríguez Y; Scott F; Vergara-Fernández A; Muñoz R Bioresour Technol; 2022 Jun; 353():127141. PubMed ID: 35405209 [TBL] [Abstract][Full Text] [Related]
38. Uncultivated Methylocystis Species in Paddy Soil Include Facultative Methanotrophs that Utilize Acetate. Leng L; Chang J; Geng K; Lu Y; Ma K Microb Ecol; 2015 Jul; 70(1):88-96. PubMed ID: 25475784 [TBL] [Abstract][Full Text] [Related]
39. Adverse Effect of the Methanotroph Jeong SY; Cho KS; Kim TG J Microbiol Biotechnol; 2018 Oct; 28(10):1706-1715. PubMed ID: 30178643 [TBL] [Abstract][Full Text] [Related]
40. Optimization of nitrogen feeding strategies for improving polyhydroxybutyrate production from biogas by Methylocystis parvus str. OBBP in a stirred tank reactor. Rodríguez Y; García S; Pérez R; Lebrero R; Muñoz R Chemosphere; 2022 Jul; 299():134443. PubMed ID: 35364084 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]