These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Heuer C; Preuß JA; Habib T; Enders A; Bahnemann J Eng Life Sci; 2022 Dec; 22(12):744-759. PubMed ID: 36514534 [TBL] [Abstract][Full Text] [Related]
7. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips. Kotz F; Helmer D; Rapp BE Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271 [TBL] [Abstract][Full Text] [Related]
9. [Applications of microfluidic paper-based chips in environmental analysis and detection]. Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581 [TBL] [Abstract][Full Text] [Related]
10. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer. Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581 [TBL] [Abstract][Full Text] [Related]
11. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Ćatić N; Wells L; Al Nahas K; Smith M; Jing Q; Keyser UF; Cama J; Kar-Narayan S Appl Mater Today; 2020 Jun; 19():100618. PubMed ID: 33521242 [TBL] [Abstract][Full Text] [Related]
12. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips. Mi S; Du Z; Xu Y; Sun W J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609 [TBL] [Abstract][Full Text] [Related]
13. Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip. Compera N; Atwell S; Wirth J; Wolfrum B; Meier M Lab Chip; 2021 Aug; 21(15):2986-2996. PubMed ID: 34143169 [TBL] [Abstract][Full Text] [Related]
14. Emerging 3D printing technologies and methodologies for microfluidic development. Monia Kabandana GK; Zhang T; Chen C Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586 [TBL] [Abstract][Full Text] [Related]
15. Rapid prototyping of microstructures by soft lithography for biotechnology. Wolfe DB; Qin D; Whitesides GM Methods Mol Biol; 2010; 583():81-107. PubMed ID: 19763460 [TBL] [Abstract][Full Text] [Related]
16. Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene. Mader M; Rein C; Konrat E; Meermeyer SL; Lee-Thedieck C; Kotz-Helmer F; Rapp BE Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832759 [TBL] [Abstract][Full Text] [Related]
17. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate. Kotz F; Mader M; Dellen N; Risch P; Kick A; Helmer D; Rapp BE Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961823 [TBL] [Abstract][Full Text] [Related]
18. The revolution of PDMS microfluidics in cellular biology. Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564 [TBL] [Abstract][Full Text] [Related]